Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication


Human impacts on biodiversity are well recognized, but uncertainties remain regarding patterns of diversity change at different spatial and temporal scales. Changes in microbial assemblages are, in particular, not well understood, partly due to the lack of community composition data over relevant scales of space and time. Here, we investigate biodiversity patterns in cyanobacterial assemblages over one century of eutrophication and climate change by sequencing DNA preserved in the sediments of ten European peri-Alpine lakes. We found species losses and gains at the lake scale, while species richness increased at the regional scale over approximately the past 100 years. Our data show a clear signal for beta diversity loss, with the composition and phylogenetic structure of assemblages becoming more similar across sites in the most recent decades, as have the general environmental conditions in and around the lakes. We attribute patterns of change in community composition to raised temperatures affecting the strength of the thermal stratification and, as a consequence, nutrient fluctuations, which favoured cyanobacterial taxa able to regulate buoyancy. Our results reinforce previous reports of human-induced homogenization of natural communities and reveal how potentially toxic and bloom-forming cyanobacteria have widened their geographic distribution in the European temperate region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: History of environmental conditions in the ten peri-Alpine lakes.
Fig. 2: Changes in cyanobacterial OTU richness and phylogenetic structure.
Fig. 3: Proportion of rare and common OTUs across all lakes.
Fig. 4: OTU richness change within cyanobacterial orders.
Fig. 5: Prevalence of OTUs in all lakes between the 1900s and 2015.


  1. 1.

    Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).

    CAS  Article  Google Scholar 

  2. 2.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  4. 4.

    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).

    Article  PubMed  Google Scholar 

  5. 5.

    González-Orozco, C. E. et al. Phylogenetic approaches reveal biodiversity threats under climate change. Nat. Clim. Change 6, 1110–1114 (2016).

    Article  Google Scholar 

  6. 6.

    Vellend, M. et al. Estimates of local biodiversity change over time stand up to scrutiny. Ecology 98, 583–590 (2017).

    Article  PubMed  Google Scholar 

  7. 7.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  9. 9.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).

    Article  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Cardinale, B. J. et al. Corrigendum: biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Adrian, R., O’Reilly, C. M., Zagarese, H., Baines, S. B. & Dag, O. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    Article  PubMed Central  PubMed  Google Scholar 

  12. 12.

    Sukenik, A., Quesada, A. & Salmaso, N. Global expansion of toxic and non-toxic cyanobacteria: effect on ecosystem functioning. Biodivers. Conserv. 24, 889–908 (2015).

    Article  Google Scholar 

  13. 13.

    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Carey, C. C., Ibelings, B. W., Hoffmann, E. P., Hamilton, D. P. & Brookes, J. D. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res. 46, 1394–1407 (2012).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Rigosi, A., Carey, C. C., Ibelings, B. W. & Brookes, J. D. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Ocean. 59, 99–114 (2014).

    Article  Google Scholar 

  16. 16.

    Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362 (2012).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Downing, J. A. J., Watson, S. S. B. & McCauley, E. Predicting cyanobacteria dominance in lakes. Can. J. Fish. Aquat. Sci. 58, 1905–1908 (2001).

    Article  Google Scholar 

  18. 18.

    Taranu, Z. E. et al. Acceleration of cyanobacterial dominance in north temperate–subarctic lakes during the Anthropocene. Ecol. Lett. 18, 375–384 (2015).

    Article  PubMed  Google Scholar 

  19. 19.

    Sinha, R. et al. Increased incidence of Cylindrospermopsis raciborskii in temperate zones—is climate change responsible? Water Res. 46, 1408–1419 (2012).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Salmaso, N. et al. Historical colonization patterns of Dolichospermum lemmermannii (cyanobacteria) in a deep lake south of the Alps. Adv. Oceanogr. Limnol. 6, 1–4 (2015).

    Article  Google Scholar 

  21. 21.

    Salmaso, N., Capelli, C., Shams, S. & Cerasino, L. Expansion of bloom-forming Dolichospermum lemmermannii (Nostocales, Cyanobacteria) to the deep lakes south of the Alps: colonization patterns, driving forces and implications for water use. Harmful Algae 50, 76–87 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Ernst, B., Hoeger, S. J., O’Brien, E. & Dietrich, D. R. Abundance and toxicity of Planktothrix rubescens in the pre-alpine Lake Ammersee, Germany. Harmful Algae 8, 329–342 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Otten, T. G., Xu, H., Qin, B., Zhu, G. & Paerl, H. W. Spatiotemporal patterns and ecophysiology of toxigenic microcystis blooms in Lake Taihu, China: implications for water quality management. Environ. Sci. Technol. 46, 3480–3488 (2012).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Glibert, P. M., Harrison, J., Heil, C. & Seitzinger, S. Escalating worldwide use of urea—a global change contributing to coastal eutrophication. Biogeochemistry 77, 441–463 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).

    Article  Google Scholar 

  26. 26.

    Domaizon, I. et al. DNA from lake sediments reveals the long-term dynamics and diversity of Synechococcus assemblages. Biogeosci. Discuss. 10, 2515–2564 (2013).

    Article  Google Scholar 

  27. 27.

    Savichtcheva, O. et al. Effects of nutrients and warming on Planktothrix dynamics and diversity: a palaeolimnological view based on sedimentary DNA and RNA. Freshw. Biol. 60, 31–49 (2015).

    CAS  Article  Google Scholar 

  28. 28.

    Monchamp, M.-E., Walser, J.-C., Pomati, F. & Spaak, P. Sedimentary DNA reveals cyanobacterial community diversity over 200 years in two perialpine lakes. Appl. Environ. Microbiol. 82, 6472–6482 (2016).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  29. 29.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  30. 30.

    Hou, W. et al. Identification of photosynthetic plankton communities using sedimentary ancient DNA and their response to late-Holocene climate change on the Tibetan Plateau. Sci. Rep. 4, 6648 (2014).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  31. 31.

    Coolen, M. J. L. et al. Ancient DNA derived from alkenone-biosynthesizing haptophytes and other algae in Holocene sediments from the Black Sea. Paleoceanography 21, 1–17 (2006).

    Article  Google Scholar 

  32. 32.

    Boere, A. C., Sinninghe Damsté, J. S., Rijpstra, W. I. C., Volkman, J. K. & Coolen, M. J. L. Source-specific variability in post-depositional DNA preservation with potential implications for DNA based paleoecological records. Org. Geochem. 42, 1216–1225 (2011).

    CAS  Article  Google Scholar 

  33. 33.

    Züllig, H. Untersuchungen über die stratigraphie von carotinoiden im geschichteten sediment von 10 Schweizer seen zur erkundung früherer phytoplankton-entfaltungen. Schweiz. Z. Hydrol. 44, 1–98 (1982).

    Google Scholar 

  34. 34.

    Liechti, P. L’Etat des Lacs en Suisse (Office Fédéral de l'Environnement, des Forêts et du Paysage, 1994).

  35. 35.

    Pomati, F., Matthews, B., Jokela, J., Schildknecht, A. & Ibelings, B. W. Effects of re-oligotrophication and climate warming on plankton richness and community stability in a deep mesotrophic lake. Oikos 121, 1317–1327 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809–813 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Livingstone, D. M. Thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).

    Article  Google Scholar 

  38. 38.

    Matthews, B. & Pomati, F. Reversal in the relationship between species richness and turnover in a phytoplankton community. Ecology 93, 2435–2447 (2012).

    Article  PubMed  Google Scholar 

  39. 39.

    Sukenik, A. et al. Invasion of Nostocales (Cyanobacteria) to subtropical and temperate freshwater lakes—physiological, regional, and global driving forces. Front. Microbiol. 3, 1–9 (2012).

    Article  Google Scholar 

  40. 40.

    Cirés, S., Wörmer, L., Wiedner, C. & Quesada, A. Temperature-dependent dispersal strategies of Aphanizomenon ovalisporum (Nostocales, Cyanobacteria): implications for the annual life cycle. Microb. Ecol. 65, 12–21 (2013).

    Article  PubMed  Google Scholar 

  41. 41.

    Gallina, N., Salmaso, N., Morabito, G. & Beniston, M. Phytoplankton configuration in six deep lakes in the peri-Alpine region: are the key drivers related to eutrophication and climate? Aquat. Ecol. 47, 177–193 (2013).

    Article  Google Scholar 

  42. 42.

    Salmaso, N. Long-term phytoplankton community changes in a deep subalpine lake: responses to nutrient availability and climatic fluctuations. Freshw. Biol. 55, 825–846 (2010).

    Article  Google Scholar 

  43. 43.

    Anneville, O., Souissi, S., Gammeter, S. & Straile, D. Seasonal and inter-annual scales of variability in phytoplankton assemblages: comparison of phytoplankton dynamics in three peri-Alpine lakes over a period of 28 years. Freshw. Biol. 49, 98–115 (2004).

    Article  Google Scholar 

  44. 44.

    Reynolds, C., Oliver, R. & Walsby, A. Cyanobacterial dominance: the role of buoyancy regulation in dynamic lake environments. NZ J. Mar. Freshw. Res. 21, 379–390 (1987).

    Article  Google Scholar 

  45. 45.

    Beard, S. J., Handley, B. A., Hayes, P. K. & Walsby, A. E. The diversity of gas vesicle genes in Planktothrix rubescens from Lake Zurich. Microbiology 145, 2757–2768 (1999).

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Jacquet, S. et al. The proliferation of the toxic cyanobacterium Planktothrix rubescens following restoration of the largest natural French lake (Lac du Bourget). Harmful Algae 4, 651–672 (2005).

    Article  Google Scholar 

  47. 47.

    Walsby, A. E. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytol. 168, 365–376 (2005).

    Article  PubMed  Google Scholar 

  48. 48.

    Litchman, E. & Klausmeier, C. A. Trait-based community ecology of phytoplankton. Annu. Rev. Ecol. Evol. Syst. 39, 615–639 (2008).

    Article  Google Scholar 

  49. 49.

    Birtel, J. & Matthews, B. Grazers structure the bacterial and algal diversity of aquatic metacommunities. Ecology 97, 3472–3484 (2016).

    Article  PubMed  Google Scholar 

  50. 50.

    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Begert, M., Schlegel, T. & Kirchhofer, W. Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int. J. Climatol. 25, 65–80 (2005).

    Article  Google Scholar 

  52. 52.

    Schmidt, W. Über die temperatur- und stabilitätsverhältnisse von seen. Geogr. Ann. 10, 145–177 (1928).

    Google Scholar 

  53. 53.

    Schwefel, R., Gaudard. A., Wüest, A. & Bouffard, D. Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): comparing observational findings and modeling. Water Resour. Res. 52, 8811–8826 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    Nübel, U., Garcia-pichel, F., Muyzer, G., Nu, U. & Muyzer, G. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327–3332 (1997).

    PubMed Central  PubMed  Google Scholar 

  55. 55.

    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Caporaso, J. G. et al. PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267 (2010).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Article  PubMed Central  PubMed  Google Scholar 

  59. 59.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2013).

  60. 60.

    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  61. 61.

    Faith, D. P., Minchin, P. R. & Belbin, L. Compsitional dissimilarity as a robust measure of ecogical distance. Vegetatio 69, 57–68 (1987).

    Article  Google Scholar 

  62. 62.

    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  63. 63.

    Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.0-10. (R Foundation for Statistical Computing, Vienna, 2013); http://CRAN.R-project.org/package=vegan.

  64. 64.

    Weinstein, J. N. et al. An information-intensive approach to the molecular pharmacology of cancer. Science 275, 343–349 (1997).

    CAS  Article  PubMed  Google Scholar 

Download references


The high-throughput sequencing data were produced at Fasteris (Geneva). We thank J.-C. Walser (Genetic Diversity Centre, ETH Zürich) for bioinformatics support and B. Müller for helping with the lake chemical data acquisition. We thank M. Thali, A. Lück, A. Zwyssig, C. Chardon, A. Lami, S. Gerli, H. Penson and C. Ouellet-Plamondon for technical assistance, as well as M. Lavrieux for help with the sediment dating. We are grateful to I. Gregory-Eaves, H. Hartikainen, R. Ptacnik, K. Räsänen, C. Tellenbach and M. K. Thomas for intellectual feedback and fruitful discussions. Coring, dating and DNA extractions for lakes Annecy and Geneva were performed in the context of the 'REPLAY' programme funded by the Structural Ecosphere Continent and Coastal Initiative at the Institut National des Sciences de l'Univers and the Iper Retro programme funded by the Agence Nationale de la Recherche VULNS-005 (France). The physical and chemical data were produced by Amt für Abfall, Wasser, Energie und Luft (Canton Zurich) for Greifensee, Wasserversorgung Zürich for Lake Zurich, Lake Constance Water Supply for Lake Constance, Abteilung für Umwelt Kanton Aargau (A. Stöckli) for Hallwilersee, Eawag/Kanton Luzern for Baldeggersee, the Swiss Federal Office for the Environment and F. Lepori at the Istituto Scienze della Terra, ITS SUPSI, Lugano for Lake Lugano, M. Manca (Consiglio Nazionale delle Ricerche, Institute of Ecosystem Study, Italy) for Lake Maggiore, the Observatory of the Alpine Lakes, Commission Internationale pour la Protection des Eaux du Léman (CIPEL), Syndicat Mixte du Lac d'Annecy (SILA) and Système d'Information de l'Observatoire des Lacs Alpins (OLA-IS) developed by Eco-Informatics, Observatoire Recherche en Environnement (ORE INRA) for the lakes Annecy and Geneva and G. Tartari (Istituto di Ricerca sulle Acque, Consiglio Nazionale delle Ricerche, Brugherio, Italy) for Lake Pusiano. This work was supported by the Swiss Enlargement Contribution, project IZERZ0 – 142165, 'CyanoArchive' to P.S., in the framework of the Romanian–Swiss Research Programme.

Author information




M.-E.M., P.S. and F.P. designed the study. I.D. and N.D. contributed the materials and analysis tools and samples. M.-E.M. and I.D. collected the data. All analyses were carried out by M.-E.M. and D.B. M.-E.M. and F.P. wrote the manuscript, which was revised and edited by all authors.

Corresponding authors

Correspondence to Marie-Eve Monchamp or Francesco Pomati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–4

Life Sciences Reporting Summary

Supplementary Table 1

Overview of lake characteristics. List of lakes geographical location, main morphological characteristics, and current trophic status

Supplementary Table 2

Overview of lake chemical data used in this study. The table includes the source of phosphorus and nitrogen data, and the duration of the nutrient time series used in this study

Supplementary Table 3

List of all samples used in this study. The table includes the sample ID, the PCR primer sequences and the tag sequences used in the sequencing library preparation

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Monchamp, M., Spaak, P., Domaizon, I. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat Ecol Evol 2, 317–324 (2018). https://doi.org/10.1038/s41559-017-0407-0

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing