Article | Published:

Forest extent and deforestation in tropical Africa since 1900

Nature Ecology & Evolutionvolume 2pages2633 (2018) | Download Citation


Accurate estimates of historical forest extent and associated deforestation rates are crucial for quantifying tropical carbon cycles and formulating conservation policy. In Africa, data-driven estimates of historical closed-canopy forest extent and deforestation at the continental scale are lacking, and existing modelled estimates diverge substantially. Here, we synthesize available palaeo-proxies and historical maps to reconstruct forest extent in tropical Africa around 1900, when European colonization accelerated markedly, and compare these historical estimates with modern forest extent to estimate deforestation. We find that forests were less extensive in 1900 than bioclimatic models predict. Resultantly, across tropical Africa, ~ 21.7% of forests have been deforested, yielding substantially slower deforestation than previous estimates (35–55%). However, deforestation was heterogeneous: West and East African forests have undergone almost complete decline (~ 83.3 and 93.0%, respectively), while Central African forests have expanded at the expense of savannahs (~ 1.4% net forest expansion, with ~ 135,270 km2 of savannahs encroached). These results suggest that climate alone does not determine savannah and forest distributions and that many savannahs hitherto considered to be degraded forests are instead relatively old. These data-driven reconstructions of historical biome distributions will inform tropical carbon cycle estimates, carbon mitigation initiatives and conservation planning in both forest and savannah systems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Houghton, R. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 51, 298–313 (1999).

  2. 2.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

  3. 3.

    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014).

  4. 4.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

  5. 5.

    Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

  6. 6.

    Houghton, R. A. & Hackler, J. L. in Effects of Land-Use Change on Atmospheric CO 2 Concentrations 301–327 (Springer, New York, 1994).

  7. 7.

    Bryant, D. et al. The Last Frontier Forests: Ecosystems and Economies on the Edge. What is the Status of the World's Remaining Large Natural Forest Ecosystems? (World Resources Institute, Washington, DC, 1997).

  8. 8.

    Fairhead, J. & Leach, M. Reframing Deforestation: Global Analyses and Local Realities with Studies in West Africa (Routledge, London and New York, 1998).

  9. 9.

    Bond, W. & Zaloumis, N. P. The deforestation story: testing for anthropogenic origins of Africa’s flammable grassy biomes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150170 (2016).

  10. 10.

    Ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).

  11. 11.

    Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).

  12. 12.

    Sayer, J., Harcourt, C. S. & Collins, N. M. The Conservation Atlas of Tropical Forests: Africa (Springer, Basingstoke, 1992).

  13. 13.

    Willcock, S. et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Change Biol. 22, 2787–2800 (2016).

  14. 14.

    Olson, D. M. & Dinerstein, E. The Global 200: a representation approach to conserving the Earth’s most biologically valuable ecoregions. Conserv. Biol. 12, 502–515 (1998).

  15. 15.

    Ramankutty, N. & Foley, J. A. Estimating historical changes in global land cover: croplands from 1700 to 1992. Glob. Biogeochem. Cycles 13, 997–1027 (1999).

  16. 16.

    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

  17. 17.

    Salzmann, U. & Hoelzmann, P. The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. Holocene 15, 190–199 (2005).

  18. 18.

    Veldman, J. W. et al. Tyranny of trees in grassy biomes. Science 347, 484–485 (2015).

  19. 19.

    Atlas of Forest and Landscape Restoration Opportunities (World Resources Institute, 2014).

  20. 20.

    Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision (Food and Agriculture Organization, 2012).

  21. 21.

    Searchinger, T. D. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change 5, 481–486 (2015).

  22. 22.

    Veldman, J. W. et al. Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65, 1011–1018 (2015).

  23. 23.

    Parr, C. L., Lehmann, C. E., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

  24. 24.

    Oyugi, J. O., Brown, J. S. & Whelan, C. J. Effects of human disturbance on composition and structure of Brachystegia woodland in Arabuko‐Sokoke Forest, Kenya. Afr. J. Ecol. 46, 374–383 (2008).

  25. 25.

    Chevalier, A. L. Afrique Centrale Française: Récit du Voyage de la Mission (A. Challamel, Paris, 1907).

  26. 26.

    Börjeson, L. A History Under Siege: Intensive Agriculture in the Mbulu Highlands, Tanzania, 19th Century to the Present. PhD thesis, Stockholm Univ. (2004).

  27. 27.

    Hansen, M. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

  28. 28.

    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science 356, 635–638 (2017).

  29. 29.

    Griffith, D. M. et al. Comment on “The extent of forest in dryland biomes”. Science 358, eaao1309 (2017).

  30. 30.

    Guisan, A., Edwards, T. C. & Hastie, T. Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecol. Model. 157, 89–100 (2002).

  31. 31.

    Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management (Food and Agriculture Organization of the United Nations, 2006).

  32. 32.

    Leach, M. & Fairhead, J. Challenging neo‐Malthusian deforestation analyses in West Africa’s dynamic forest landscapes. Popul. Dev. Rev. 26, 17–43 (2000).

  33. 33.

    Wilcox, B. A. Tropical forest resources and biodiversity: the risks of forest loss and degradation. Unasylva 46, 43–49 (1995).

  34. 34.

    Bishaw, B. Deforestation and land degradation in the Ethiopian highlands: a strategy for physical recovery. Northeast Afr. Stud. 8, 7–25 (2001).

  35. 35.

    Linder, H. P. et al. The partitioning of Africa: statistically defined biogeographical regions in sub‐Saharan Africa. J. Biogeogr. 39, 1189–1205 (2012).

  36. 36.

    Aubreville, A. M. A. The disappearance of the tropical forests of Africa. Unasylva 1, 5–11 (1947).

  37. 37.

    Runge, J. Holocene landscape history and palaeohydrology evidenced by stable carbon isotope (δ13C) analysis of alluvial sediments in the Mbari valley (5° N/23° E), Central African Republic. Catena 48, 67–87 (2002).

  38. 38.

    Delègue, M., Fuhr, M., Schwartz, D., Mariotti, A. & Nasi, R. Recent origin of a large part of the forest cover in the Gabon coastal area based on stable carbon isotope data. Oecologia 129, 106–113 (2001).

  39. 39.

    Moisel, M. Bayerische Staatsbibliothek (Reimer, Berlin, 1913).

  40. 40.

    Shantz, H. L. & Marbut, C. F. The Vegetation and Soils of Africa (National Research Council & American Geographical Society, 1923).

  41. 41.

    Cuni-Sanchez, A. et al. African savanna–forest boundary dynamics: a 20-year study. PLoS ONE 11, e0156934 (2016).

  42. 42.

    Mitchard, E. T. & Flintrop, C. M. Woody encroachment and forest degradation in sub-Saharan Africa’s woodlands and savannas 1982–2006. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120406 (2013).

  43. 43.

    Vincens, A. et al. Forest response to climate changes in Atlantic Equatorial Africa during the last 4000 years bp and inheritance on the modern landscapes. J. Biogeogr. 26, 879–885 (1999).

  44. 44.

    Higgins, S. I. & Scheiter, S. Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488, 209–212 (2012).

  45. 45.

    Van Gemerden, B. S., Olff, H., Parren, M. P. & Bongers, F. The pristine rain forest? Remnants of historical human impacts on current tree species composition and diversity. J. Biogeogr. 30, 1381–1390 (2003).

  46. 46.

    Debroux, L., Hart, T., Kaimowitz, D., Karsenty, A. & Topa, G. Forests in Post-Conflict Democratic Republic of Congo: Analysis of a Priority Agenda (Center for International Forestry Research, the World Bank and CIRAD, 2007).

  47. 47.

    Laurance, W. F., Campbell, M. J., Alamgir, M. & Mahmoud, M. I. Road expansion and the fate of Africa’s tropical forests. Front. Ecol. Evol. 5, 75 (2017).

  48. 48.

    Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120295 (2013).

  49. 49.

    Williams, J. Variations in tree cover in North America since the last glacial maximum. Glob. Planet. Change 35, 1–23 (2003).

  50. 50.

    Aleman, J. et al. Reconstructing savanna tree cover from pollen, phytoliths and stable carbon isotopes. J. Veg. Sci. 23, 187–197 (2012).

  51. 51.

    Hamilton, A., Taylor, D. & Vogel, J. Early forest clearance and environmental degradation in south-west Uganda. Nature 320, 164–167 (1986).

  52. 52.

    Lézine, A.-M. Les variations de la couverture forestière mésophile d’Afrique occidentale au cours de l’Holocène. C. R. Acad. Sci. Paris 307, 439–445 (1988).

  53. 53.

    Ballouche, A. & Neumann, K. A new contribution to the Holocene vegetation history of the West African Sahel: pollen from Oursi, Burkina Faso and charcoal from three sites in northeast Nigeria. Veg. Hist. Archaeobot. 4, 31–39 (1995).

  54. 54.

    Reynaud-Farrera, I., Maley, J. & Wirrmann, D. Végétation et climat dans les forêts du sud-ouest Cameroun depuis 4770 ans bp: analyse pollinique des sédiments du lac Ossa. C. R. Acad. Sci. Paris 322, 749–755 (1996).

  55. 55.

    Vincens, A. et al. Changement majeur de la végétation du lac Sinnda (vallée du Niari, Sud-Congo) consécutif à l’assèchement climatique holocène supérieur: apport de la palynologie. C. R. Acad. Sci. Paris 318, 1521–1526 (1994).

  56. 56.

    Tossou, M. G. Recherche Palynologique sur la Végétation Holocène du Sud-Bénin (Afrique de l’Ouest). PhD thesis, Univ. Lome (2002).

  57. 57.

    Ssemmanda, I. & Vincens, A. Végétation et climat dans le bassin du lac Albert (Ouganda, Zaïre) depuis 13000 ans bp: apport de la palynologie. C. R. Acad. Sci. Paris 316, 561–567 (1993).

  58. 58.

    Hamilton, A. C. Environmental History of East Africa: a Study of the Quaternary (Academic, London, 1982).

  59. 59.

    Bonnefille, R. & Mohammed, U. Pollen-inferred climatic fluctuations in Ethiopia during the last 3000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 331–343 (1994).

  60. 60.

    Laseski, R. A. Modern Pollen Data and Holocene Climate Change in Eastern Africa. PhD thesis, Brown Univ. (1983).

  61. 61.

    Darbyshire, I., Lamb, H. & Umer, M. Forest clearance and regrowth in northern Ethiopia during the last 3000 years. Holocene 13, 537–546 (2003).

  62. 62.

    Jolly, D. Evolution et Dynamique des Écosystèmes du Burundi: Pollen et Statistique. PhD thesis, Univ. d'Aix-Marseille II (1994).

  63. 63.

    Lamb, H. F. Multi-proxy records of Holocene climate and vegetation change from Ethiopian Crater Lakes. Biol. Environ. 101B, 35–46 (2001).

  64. 64.

    Elenga, H., Schwartz, D. & Vincens, A. Changements climatiques et action anthropique sur le littoral congolais au cours de l’Holocène. Bull. Soc. Géol. Fr. 163, 83–90 (1992).

  65. 65.

    Bonnefille, R. & Riollet, G. The Kashiru pollen sequence (Burundi) palaeoclimatic implications for the last 40,000 yr bp in tropical Africa. Quat. Res. 30, 19–35 (1988).

  66. 66.

    Bonnefille, R., Riollet, G. & Buchet, G. Nouvelle séquence pollinique d’une tourbière de la crête Zaïre-Nil (Burundi). Rev. Palaeobot. Palynol. 67, 315–330 (1991).

  67. 67.

    Moscol-Olivera, M. & Roche, E. Analyse palynologique d’une sequence sedimentaire holocene a musisi-karashoma (ktvu, rd congo). Influences climatiques et anthropiques sur l’environnement. Geo-Eco-Trop. 20, 1–26 (1996).

  68. 68.

    Marchant, R. & Taylor, D. Dynamics of montane forest in central Africa during the late Holocene: a pollen-based record from western Uganda. Holocene 8, 375–381 (1998).

  69. 69.

    Taylor, D. Late Quaternary pollen records from two Ugandan mires: evidence for environmental changes in the Rukiga Highlands of southwest Uganda. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 283–300 (1990).

  70. 70.

    Vincens, A. Nouvelle sequence pollinique du Lac Tanganyika: 30,000 ans d’histoire botanique et climatique du Bassin Nord. Rev. Palaeobot. Palynol. 78, 381–394 (1993).

  71. 71.

    Bonnefille, R. et al. Palaeoenvironment of Lake Abijata, Ethiopia, during the past 2000 years. Geo. Soc. Spec. Publ. 25, 253–265 (1986).

  72. 72.

    Vincens, A. Diagramme pollinique d’un sondage Pleistocene superieur—Holocene du Lac Bogoria (Kenya). Rev. Palaeobot. Palynol. 47, 169183–179192 (1986).

  73. 73.

    Nakimera, I. The Impact of Human Activities and Climate on the Vegetation in the Lake Victoria Region and on the Rwenzori Mountain and its Neighbourhood. PhD thesis, Makerere Univ. (2001).

  74. 74.

    Msaky, E. S., Livingstone, D. & Davis, O. K. Paleolimnological investigations of anthropogenic environmental change in Lake Tanganyika: V. Palynological evidence for deforestation and increased erosion. J. Paleolimnol. 34, 73–83 (2005).

  75. 75.

    Bousman, C. et al. Palaeoenvironmental implications of late Pleistocene and Holocene valley fills in Blydefontein basin, Noupoort, CP, South Africa. Palaeoecol. Afr. 19, 43–67 (1988).

  76. 76.

    Scott, L. Holocene environmental change at western Orange Free State pans, South Africa, inferred from pollen analysis. Palaeoecol. Afr. 19, 109–118 (1988).

  77. 77.

    Scott, L. & Vogel, J. Short-term changes of climate and vegetation revealed by pollen analysis of hyrax dung in South Africa. Rev. Palaeobot. Palynol. 74, 283–291 (1992).

  78. 78.

    Scott, L. & Steenkamp, M. Environmental history and recent human influence at coastal Lake Teza, KwaZulu-Natal. South Afr. J. Sci. 92, 348–350 (1996).

  79. 79.

    Scott, L. Late Quaternary forest history in Venda, southern Africa. Rev. Palaeobot. Palynol. 53, 1–10 (1987).

  80. 80.

    Meadows, M. E., Baxter, A. J. & Adams, T. The late Holocene vegetation history of lowland fynbos, Verlorenvlei, southwestern Cape Province, South Africa. Hist. Biol. 9, 47–59 (1994).

  81. 81.

    Baxter, A. J. Late Quaternary Palaeoenvironments of the Sandveld, Western Cape Province, South Africa. PhD thesis, Univ. Cape Town (1997).

  82. 82.

    Vilimumbalo, S. Paléoenvironnements et Interprétations paléoclimatiques des dépôts palustres du Pléistocène supérieur et de l’Holocène du Rift Centrafricain au Sud du lac Kivu (Zaïre). PhD thesis, Univ. Liège (1993).

  83. 83.

    Lamb, H., Darbyshire, I. & Verschuren, D. Vegetation response to rainfall variation and human impact in central Kenya during the past 1100 years. Holocene 13, 285–292 (2003).

  84. 84.

    Maley, J. & Brénac, P. Analyses polliniques préliminaires du Quaternaire récent de l’Ouest Cameroun: mise en évidence de refuges forestiers et discussion des problèmes paléoclimatiques. Mémoires Trav. EPHE 17, 129–142 (1987).

  85. 85.

    Maley, J. Etudes Palynologiques dans le Bassin du Tchad et Paléoclimatologie de l’Afrique Nord-Tropicale de 30000 Ans à l'Époque Actuelle (ORSTOM, Paris, 1981).

  86. 86.

    Umer, M. et al. Late pleistocene and holocene vegetation history of the bale mountains, Ethiopia. Quat. Sci. Rev. 26, 2229–2246 (2007).

  87. 87.

    Schulz, E. Aktueller Pollenniederschlag in der zentralen Sahara und Interpretationsmoglichkeiten quartarer Pollenspektren. Palaeoecology of Africa and of the surrounding islands and Antarctica 8–14 (1976).

  88. 88.

    Ngos, S. III, Giresse, P. & Maley, J. Palaeoenvironments of Lake Assom near Tibati (south Adamawa, Cameroon). What happened in Tibati around 1700 years bp? J. Afr. Earth Sci. 37, 35–45 (2003).

  89. 89.

    Tamura, T. in Paysages Quaternaires de L’Afrique Centrale Atlantique (eds Lanfranchi, R. & Schwartz, D.) 298–313 (Editions de l'Orstom, Paris, 1990).

  90. 90.

    Holmes, J. et al. Late Holocene palaeolimnology of Bal Lake, northern Nigeria, a multidisciplinary study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 148, 169–185 (1999).

  91. 91.

    Assi-Kaudjhis, C. in Forest Ecosystems—More than Just Trees (eds Blanco, J. A. & Lo, Y.-H.) Ch. 6 (2012).

  92. 92.

    Kiahtipes, C. et al. Prehistory and the present: palaeoenvironments in the northern Congo Basin. Farming 2011, 1–14 (2011).

  93. 93.

    Maley, J. The African rain forest vegetation and palaeoenvironments during late Quaternary. Clim. Change 19, 79–98 (1991).

  94. 94.

    Nelson, D. M., Verschuren, D., Urban, M. A. & Hu, F. S. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Glob. Change Biol. 18, 3160–3170 (2012).

  95. 95.

    Assi-Kaudjhis, C., Digbehi, B. Z., Roche, E. & Lezine, A.-M. Synthèse sur l’évolution des paléoenvironnements de l’Afrique occidentale atlantique depuis la fin de la dernière période glaciaire. Influences climatiques et anthropiques. Geo-Eco-Trop 34, 1–28 (2010).

  96. 96.

    Lavachery, P. The Holocene archaeological sequence of Shum Laka rock shelter (Grassfields, western Cameroon). Afr. Archaeol. Rev. 18, 213–247 (2001).

  97. 97.

    Moeyersons, J. Geomorphological processes and their palaeoenvironmental significance at the Shum Laka cave (Bamenda, western Cameroon). Palaeogeogr. Palaeoclimatol. Palaeoecol. 133, 103–116 (1997).

  98. 98.

    Richards, K. Preliminary results of pollen analysis of a 6000 year core from Mboandong, a crater lake in Cameroon. Hull. Univ. Geogr. Dep. Misc. Ser. 32, 14–28 (1986).

  99. 99.

    Ngomanda, A., Neumann, K., Schweizer, A. & Maley, J. Seasonality change and the third millennium bp rainforest crisis in southern Cameroon (Central Africa). Quat. Res. 71, 307–318 (2009).

  100. 100.

    Elenga, H., Schwartz, D. & Vincens, A. Pollen evidence of late Quaternary vegetation and inferred climate changes in Congo. Palaeogeogr. Palaeoclimatol. Palaeoecol. 109, 345–356 (1994).

  101. 101.

    Burrough, S. L. & Willis, K. J. Ecosystem resilience to late-Holocene climate change in the Upper Zambezi Valley. Holocene 25, 1811–1828 (2015).

  102. 102.

    Ekblom, A. & Gillson, L. Hierarchy and scale: testing the long term role of water, grazing and nitrogen in the savanna landscape of Limpopo National Park (Mozambique). Landsc. Ecol. 25, 1529–1546 (2010).

  103. 103.

    Livingstone, D. A. 22,000-year pollen record from the plateau of Zambia. Limnol. Oceanogr. 16, 349–356 (1971).

  104. 104.

    Waller, M. P., Street‐Perrott, F. A. & Wang, H. Holocene vegetation history of the Sahel: pollen, sedimentological and geochemical data from Jikariya Lake, north‐eastern Nigeria. J. Biogeogr. 34, 1575–1590 (2007).

  105. 105.

    Ekblom, A. Forest–savanna dynamics in the coastal lowland of southern Mozambique since c. ad 1400. Holocene 18, 1247–1257 (2008).

  106. 106.

    Runge, J. in Southern Hemisphere Paleo- and Neoclimates 249–262 (Springer, Berlin, 2000).

  107. 107.

    Vincens, A., Buchet, G., Servant, M. & ECOFIT Mbalang collaborators Vegetation response to the “African Humid Period” termination in Central Cameroon (7 N)—new pollen insight from Lake Mbalang. Clim. Past 6, 281–294 (2010).

  108. 108.

    Brncic, T., Willis, K., Harris, D. & Washington, R. Culture or climate? The relative influences of past processes on the composition of the lowland Congo rainforest. Philos. Trans. R. Soc. B Biol. Sci. 362, 229–242 (2007).

  109. 109.

    Brncic, T., Willis, K., Harris, D., Telfer, M. & Bailey, R. Fire and climate change impacts on lowland forest composition in northern Congo during the last 2580 years from palaeoecological analyses of a seasonally flooded swamp. Holocene 19, 79–89 (2009).

  110. 110.

    Ngomanda, A. et al. Vegetation changes during the past 1300 years in western equatorial Africa: a high resolution pollen record from Lake Kamalee, Lope Reserve, Central Gabon. Holocene 15, 1021–1031 (2005).

  111. 111.

    Vincens, A., Lézine, A., Buchet, G., Lewden, D. & Le Thomas, A. African pollen database inventory of tree and shrub pollen types. Rev. Palaeobot. Palynol. 145, 135–141 (2007).

  112. 112.

    Piperno, D. Phytoliths: a Comprehensive Guide for Archaeologists and Paleoecologists (Altamira, Oxford, 2006).

  113. 113.

    Bremond, L., Alexandre, A., Hely, C. & Guiot, J. A phytolith index as a proxy of tree cover density in tropical areas: calibration with leaf area index along a forest–savanna transect in southeastern Cameroon. Glob. Planet. Change 45, 277–293 (2005).

  114. 114.

    Aleman, J. C., Canal-Subitani, S., Favier, C. & Bremond, L. Influence of the local environment on lacustrine sedimentary phytolith records. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 273–283 (2014).

  115. 115.

    Runge, F. & Fimbel, R. Opal phytoliths as evidence for the formation of savannah islands in the rain forest of Southeast Cameroon. Palaeoecology of Africa and the Surrounding Islands 27, 171–185 (2001).

  116. 116.

    Runge, F. The opal phytolith inventory of soils in central Africa—quantities, shapes, classification, and spectra. Rev. Palaeobot. Palynol. 107, 23–53 (1999).

  117. 117.

    Bremond, L., Bodin, S., Bentaleb, I., Favier, C. & Canal, S. Past tree cover of the Congo Basin recovered by phytoliths and δ13C along soil profiles. Quat. Int. 434, 91–101 (2017).

  118. 118.

    Bremond, L. et al. Phytolith indices as proxies of grass subfamilies on East African tropical mountains. Glob. Planet. Change 61, 209–224 (2008).

  119. 119.

    Gillson, L. Testing non-equilibrium theories in savannas: 1400 years of vegetation change in Tsavo National Park, Kenya. Ecol. Complex. 1, 281–298 (2004).

  120. 120.

    Schwartz, D. Intérêt de la mesure du 13C des sols en milieu naturel equatorial pour la connaissance des aspects pédologiques et écologiques des relations savane-forêt: exemples du Congo. Cah. Orstom sér. Pédol. 26, 327–341 (1991).

  121. 121.

    Runge, J., Sangen, M., Neumer, M., Eisenberg, J. & Becker, E. Late Quaternary valley and slope deposits and their palaeoenvironmental significance in the Upper Congo Basin, Central Africa. New Stud. Former Recent Landsc. Chang. Afr. Palaeoecol. Afr. 32, 53 (2013).

  122. 122.

    Oslisly, R. Hommes et milieux à l’Holocène dans la moyenne vallée de l’Ogooué (Gabon). Bull. Soc. Préhis. Fr. 95, 93–105 (1998).

  123. 123.

    Guillet, B. et al. Agreement between floristic and soil organic carbon isotope (13C/12C, 14C) indicators of forest invasion of savannas during the last century in Cameroon. J. Trop. Ecol. 17, 809–832 (2001).

  124. 124.

    Desjardins, T. et al. δ13C variation of soil organic matter as an indicator of vegetation change during the Holocene in central Cameroon. C. R. Geosci. 345, 266–271 (2013).

  125. 125.

    Vleminckx, J. et al. Soil charcoal to assess the impacts of past human disturbances on tropical forests. PLoS ONE 9, e108121 (2014).

  126. 126.

    Tovar, C. et al. Influence of 1100 years of burning on the central African rainforest. Ecography 37, 1139–1148 (2014).

  127. 127.

    Biwolé, A. B. et al. New data on the recent history of the littoral forests of southern Cameroon: an insight into the role of historical human disturbances on the current forest composition. Plant Ecol. Evol. 148, 19–28 (2015).

  128. 128.

    Morin-Rivat, J. et al. High spatial resolution of late-Holocene human activities in the moist forests of central Africa using soil charcoal and charred botanical remains. Holocene 26, 1954–1967 2016).

  129. 129.

    Gillet, J.-F. Les Forêts à Marantaceae au Sein de la Mosaïque Forestière du Nord de la République du Congo: Origines et Modalités de Gestion. PhD thesis, Univ. Liège (2013).

  130. 130.

    Hubau, W. et al. Ancient charcoal as a natural archive for paleofire regime and vegetation change in the Mayumbe, Democratic Republic of the Congo. Quat. Res. 80, 326–340 (2013).

  131. 131.

    Hubau, W. et al. Archaeological charcoals as archives for firewood preferences and vegetation composition during the late Holocene in the southern Mayumbe, Democratic Republic of the Congo (DRC). Veg. Hist. Archaeobot. 23, 591–606 (2014).

  132. 132.

    Hubau, W., Van den Bulcke, J., Van Acker, J. & Beeckman, H. Charcoal‐inferred Holocene fire and vegetation history linked to drought periods in the Democratic Republic of Congo. Glob. Change Biol. 21, 2296–2308 (2015).

  133. 133.

    Alexandre, A., Meunier, J. D., Lézine, A. M., Vincens, A. & Schwartz, D. Phytoliths: indicators of grassland dynamics during the late Holocene in intertropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 136, 213–229 (1997).

  134. 134.

    Bremond, L., Alexandre, A., Peyron, O. & Guiot, J. Grass water stress estimated from phytoliths in West Africa. J. Biogeogr. 32, 311–327 (2005).

  135. 135.

    Barboni, D., Bonnefille, R., Alexandre, A. & Meunier, J. Phytoliths as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 152, 87–100 (1999).

  136. 136.

    Barboni, D., Bremond, L. & Bonnefille, R. Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 454–470 (2007).

  137. 137.

    Esteban, I. et al. Modern soil phytolith assemblages used as proxies for Paleoscape reconstruction on the south coast of South Africa. Quat. Int. 434, 160–179 (2016).

  138. 138.

    Novello, A. et al. Phytolith signal of aquatic plants and soils in Chad, Central Africa. Rev. Palaeobot. Palynol. 178, 43–58 (2012).

  139. 139.

    Novello, A. et al. Phytoliths indicate significant arboreal cover at Sahelanthropus type locality TM266 in northern Chad and a decrease in later sites. J. Hum. Evol. 106, 66–83 (2017).

  140. 140.

    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 51–56 (2011).

  141. 141.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2015).

  142. 142.

    Stanley, H. M. Geographical results of the Emin Pasha relief expedition. Proc. R. Geog. Soc. Mon. Rec. Geog. 12, 313–331 (1890).

  143. 143.

    Engler, A. Die Pflanzenwelt Afrikas; insbesondere seiner tropischen Gebiete. Vegetation der Erde. Band Allgemeiner Uberblick Uber Pflanzenwelt Afrikas und Ihre Existenzbedingungen 9, 1–460 (1908–1910).

  144. 144.

    Chevalier, A. Rapport Sur une Mission Scientifique dans l’Ouest Africain (1908–1910) (Imprimerie Nationale, Paris, 1912).

  145. 145.

    Meunier, A. Afrique Equatoriale Française (Ministère des Colonies, Paris, 1926).

  146. 146.

    Lu, G. Y. & Wong, D. W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 34, 1044–1055 (2008).

  147. 147.

    Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

  148. 148.

    McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).

  149. 149.

    Gornitz, V. A survey of anthropogenic vegetation changes in West Africa during the last century—climatic implications. Clim. Change 7, 285–325 (1985).

  150. 150.

    Parry, J. Tree choppers become tree planters. Appropr. Technol. 30, 38–39 (2003).

  151. 151.

    Kigomo, B. Forests and Woodlands Degradation in Dryland Africa: A Case for Urgent Global Attention.  Report on the XII World Forestry Congress (Food and Agriculture Organization of the United States, 2003).

Download references


Financial support for this study was provided by a National Science Foundation grant (DMS-1615531) to A.C.S., by the Sessel Fund and by another anonymous donor to Yale University for A.C.S. and J.C.A., and by the Yale Climate and Energy Institute to M.A.J. The authors thank C. Favier and J. Kaplan for early discussions and G. Aleman for help with the map extraction and processing.

Author information

Author notes

    • Julie C. Aleman

    Present address: Department of Geography, Université de Montréal, 520 Chemin-de-la-Côte-Ste-Catherine, Montréal, Quebec, H2V 2B8, Canada


  1. Ecology and Evolutionary Biology, Yale University, Osborn Memorial Labs, 165 Prospect Street, New Haven, CT, 06511, USA

    • Julie C. Aleman
    • , Marta A. Jarzyna
    •  & A. Carla Staver


  1. Search for Julie C. Aleman in:

  2. Search for Marta A. Jarzyna in:

  3. Search for A. Carla Staver in:


J.C.A. and A.C.S. designed the study and analyses. J.C.A. assembled and calibrated the palaeo-data. M.A.J. developed and ran the models. J.C.A. and A.C.S. co-wrote the paper, with feedback and methods contributions from M.A.J.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Julie C. Aleman.

Supplementary information

  1. Supplementary Information

    Supplementary Tables 1–3, Supplementary Results, Supplementary Figures 1–7, Supplementary References.

  2. Life Sciences Reporting Summary

  3. Supplementary Data 1

    All palaeo-proxy records used for past forest extent reconstructions. This Excel file contains the palaeo-proxy records that were used in this study, with information on the site name, location, type of proxy, value of proxy, reconstructed biome and the publication.

  4. Supplementary Data 2

    Modern phytolith records used in biome calibration. This Excel file contains the modern phytolith records that were used for the calibration procedure, with information on the sample name, location, D/P value, the ecosystem type and the publication.

  5. Supplementary Data 3

    Modern δ13C of soil organic matter records used in biome calibration. This Excel file contains the modern δ13C of soil organic matter records that were used for the calibration procedure, with information on the sample name, location, δ13C value, the ecosystem type and the publication.

  6. Supplementary Data 4

    Rates of forest change per country for a tree cover threshold of 65%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 65% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

  7. Supplementary Data 5

    Rates of forest change per country for a tree cover threshold of 70%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 70% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

  8. Supplementary Data 6

    Rates of forest change per country for a tree cover threshold of 75%, based on a probability threshold of 0.5. This Excel file contains the data about the median forest area in 1900 and 2000 per country modelled for a tree cover threshold of 75% and based on a probability threshold of 0.5, and the 2.5 and 97.5 quantile confidence intervals of the estimates of relative and absolute forest changes resulting from the bootstrapping procedure.

  9. Supplementary Data 7

    This R file contains the code for running the models that compute the probabilities of forest presence in 1900 and 2000, for assigning the presence of forest or savannah to each grid cell based on a probability threshold of 0.5, and for quantifying forest change for each country.

About this article

Publication history