Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The ecological importance of intraspecific variation

Abstract

Human activity is causing wild populations to experience rapid trait change and local extirpation. The resulting effects on intraspecific variation could have substantial consequences for ecological processes and ecosystem services. Although researchers have long acknowledged that variation among species influences the surrounding environment, only recently has evidence accumulated for the ecological importance of variation within species. We conducted a meta-analysis comparing the ecological effects of variation within a species (intraspecific effects) with the effects of replacement or removal of that species (species effects). We evaluated direct and indirect ecological responses, including changes in abundance (or biomass), rates of ecological processes and changes in community composition. Our results show that intraspecific effects are often comparable to, and sometimes stronger than, species effects. Species effects tend to be larger for direct ecological responses (for example, through consumption), whereas intraspecific effects and species effects tend to be similar for indirect responses (for example, through trophic cascades). Intraspecific effects are especially strong when indirect interactions alter community composition. Our results summarize data from the first generation of studies examining the relative ecological effects of intraspecific variation. Our conclusions can help inform the design of future experiments and the formulation of strategies to quantify and conserve biodiversity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Hedges’ g values (± 95% CIs) grouped by focal species (polygons) and studies for which intraspecific effects are larger (g < −0.3), similar to (−0.3 < g < 0.3) or smaller than (g > 0.3) species effects.
Fig. 3: Hedges’ g values (± 95% CIs) grouped by ecological response and the direct (filled) versus indirect (unfilled) effects of the focal species for which intraspecific effects are larger (g < −0.3), similar to (−0.3 < g < 0.3) or smaller than (g > 0.3) species effects.

Similar content being viewed by others

References

  1. Brooks, J. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).

    Article  CAS  PubMed  Google Scholar 

  2. Power, M. E. et al. Challenges in the quest for keystones. Bioscience 46, 609–620 (1996).

    Article  Google Scholar 

  3. Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 245–253 (2012).

    Google Scholar 

  5. Bailey, J. K. et al. From genes to ecosystems: an emerging synthesis of eco-evolutionary dynamics. New Phytol. 184, 746–749 (2009).

    Article  PubMed  Google Scholar 

  6. Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article  Google Scholar 

  8. Schoener, T. W. The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Post, D. M. et al. Eco-evolutionary feedbacks in community and ecosystem ecology: interactions between the ecological theatre and the evolutionary play. Phil. Trans. R. Soc. B 364, 1629–1640 (2009).

    Article  Google Scholar 

  10. Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Article  Google Scholar 

  11. Albert, C. H. et al. A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Funct. Ecol. 24, 1192–1201 (2010).

    Article  Google Scholar 

  12. Palkovacs, E. P. & Post, D. M. Experimental evidence that phenotypic divergence in predators drives community divergence in prey. Ecology 90, 300–305 (2009).

    Article  PubMed  Google Scholar 

  13. Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Crutsinger, G. M., Sanders, N. J. & Classen, A. T. Comparing intra- and inter-specific effects on litter decomposition in an old-field ecosystem. Basic Appl. Ecol. 10, 535–543 (2009).

    Article  Google Scholar 

  15. Kinnison, M. T. & Hairston, N. G. J. Eco-evolutionary conservation biology: contemporary evolution and the dynamics of persistence. Funct. Ecol. 21, 444–454 (2007).

    Article  Google Scholar 

  16. Govaert, L., Pantel, J. H. & De Meester, L. Eco-evolutionary partitioning metrics: assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).

    Article  PubMed  Google Scholar 

  17. Schweitzer, J. A. et al. Forest gene diversity is correlated with the composition and function of soil microbial communities. Popul. Ecol. 53, 35–46 (2011).

    Article  Google Scholar 

  18. Genung, M. A., Bailey, J. K. & Schweitzer, J. A. Welcome to the neighbourhood: interspecific genotype by genotype interactions in Solidago influence above- and belowground biomass and associated communities. Ecol. Lett. 15, 65–73 (2012).

    Article  PubMed  Google Scholar 

  19. Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Palkovacs, E. P., Kinnison, M. T., Correa, C., Dalton, C. M. & Hendry, A. P. Fates beyond traits: ecological consequences of human-induced trait change. Evol. Appl. 5, 183–191 (2012).

    Article  PubMed  Google Scholar 

  21. Angelini, C. et al. Interactions among foundation species and their consequences for community organization, biodiversity, and conservation. Bioscience 61, 782–789 (2011).

    Article  Google Scholar 

  22. Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).

    Article  PubMed  Google Scholar 

  26. Richardson, J. L., Urban, M. C., Bolnick, D. I. & Skelly, D. K. Microgeographic adaptation and the spatial scale of evolution. Trends Ecol. Evol. 29, 165–176 (2014).

    Article  PubMed  Google Scholar 

  27. West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).

    Article  Google Scholar 

  28. Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, Princeton, 2017).

  29. Des Roches, S., Shurin, J. B., Schluter, D. & Harmon, L. J. Ecological and evolutionary effects of stickleback on community structure. PLoS ONE 8, e59644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chislock, M. F., Sarnelle, O., Olsen, B. K., Doster, E. & Wilson, A. E. Large effects of consumer offense on ecosystem structure and function. Ecology 94, 2375–2380 (2013).

    Article  PubMed  Google Scholar 

  31. Royauté, R. & Pruitt, J. N. Varying predator personalities generates contrasting prey communities in an agroecosystem. Ecology 96, 2902–2911 (2015).

    Article  PubMed  Google Scholar 

  32. Bowatte, S. et al. Offspring of plants exposed to elevated or ambient CO2 differ in their impacts on soil nitrification in a common garden experiment. Soil Biol. Biochem. 62, 134–136 (2013).

    Article  CAS  Google Scholar 

  33. Olden, J. D., Poff, N. L., Douglas, M. R., Douglas, M. E. & Fausch, K. D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 19, 18–24 (2004).

    Article  PubMed  Google Scholar 

  34. Farkas, T. E., Mononen, T., Comeault, A. A., Hanski, I. & Nosil, P. Evolution of camouflage drives rapid ecological change in an insect community. Curr. Biol. 23, 1835–1843 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Urban, M. C. Evolution mediates the effects of apex predation on aquatic food webs. Proc. R. Soc. B 280, 20130859 (2013).

    Article  Google Scholar 

  36. Charette, C. & Derry, A. M. Climate alters intraspecific variation in copepod effect traits through pond food webs. Ecology 97, 1239–1250 (2016).

    PubMed  Google Scholar 

  37. Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Annu. Rev. Ecol. Syst. 25, 443–466 (1994).

    Article  Google Scholar 

  38. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Lawrence Erlbaum Associates, Mahwah, 1988).

  39. Fussmann, G. F., Loreau, M. & Abrams, P. A. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21, 465–477 (2007).

    Article  Google Scholar 

  40. Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a community context: on integrating ecological interactions and macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).

    Article  PubMed  Google Scholar 

  41. Read, Q. D. et al. Accounting for the nested nature of genetic variation across levels of organization improves our understanding of biodiversity and community ecology. Oikos 125, 895–904 (2016).

    Article  Google Scholar 

  42. Tessier, A. J. & Woodruff, P. Cryptic trophic cascade along a gradient of lake size. Ecology 83, 1263–1270 (2002).

    Article  Google Scholar 

  43. Hazard, C., Kruitbos, L., Davidson, H., Taylor, A. F. S. & Johnson, D. Contrasting effects of intra- and interspecific identity and richness of ectomycorrhizal fungi on host plants, nutrient retention and multifunctionality. New Phytol. 213, 852–863 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Fridley, J. D. & Grime, J. P. Community ecosystem effects of intraspecific genetic diversity in microcosms of grassland varying species diversity. Ecology 91, 2272–2283 (2010).

    Article  PubMed  Google Scholar 

  45. Ohgushi, T. Herbivore-induced effects through trait change in plants. Annu. Rev. Ecol. Evol. Syst. 36, 81–105 (2005).

    Article  Google Scholar 

  46. Müller, M. S. et al. Tri-trophic effects of plant defenses: chickadees consume caterpillars based on host leaf chemistry. Oikos 114, 507–517 (2006).

    Article  Google Scholar 

  47. Weis, J. J. & Post, D. M. Intraspecific variation in a predator drives cascading variation in primary producer community composition. Oikos 122, 1343–1349 (2013).

    Article  Google Scholar 

  48. Crutsinger, G. M. et al. Plant genotypic diversity predicts community structure and governs an ecosystem process. Science 313, 966–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Nosek, B. A. et al. Promoting an open research culture. Science 348, 1422–1425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li, Y., Dicke, M., Harvey, J. A. & Gols, R. Intra-specific variation in wild Brassica oleracea for aphid-induced plant responses and consequences for caterpillar–parasitoid interactions. Oecologia 174, 853–862 (2014).

    Article  PubMed  Google Scholar 

  54. Compson, Z. G. et al. Plant genotype influences aquatic–terrestrial ecosystem linkages through timing and composition of insect emergence. Ecosphere 7, 1–20 (2016).

    Article  Google Scholar 

  55. Hargrave, C. W., Hambright, K. D. & Weider, L. J. Variation in resource consumption across a gradient of increasing intra- and interspecific richness. Ecology 92, 1226–1235 (2011).

    Article  PubMed  Google Scholar 

  56. Walsh, M. R., Delong, J. P., Hanley, T. C. & Post, D. M. A cascade of evolutionary change alters consumer-resource dynamics and ecosystem function. Proc. R. Soc. B 279, 3184–3192 (2012).

    Article  Google Scholar 

  57. Strauss, S. Y. Indirect effects in community ecology: their definition, study and importance. Trends Ecol. Evol. 6, 206–210 (1991).

    Article  CAS  PubMed  Google Scholar 

  58. Balvanera, P. et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146–1156 (2006).

    Article  PubMed  Google Scholar 

  59. Palkovacs, E. P., Fryxell, D. C., Turley, N. E. & Post, D. M. in Aquatic Functional Biodiversity (eds Belgrano, A., Woodward, G. & Jacob, U.) 37–51 (Elsevier, London, 2015).

  60. Hedges, L. V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 6, 107–128 (1981).

    Article  Google Scholar 

  61. Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  62. Viechtbauer, W. Accounting for heterogeneity via random-effects models and moderator analyses in meta-analysis. J. Psychol. 215, 104–121 (2007).

    Google Scholar 

  63. Konstantopoulos, S. Fixed effects and variance components estimation in three-level meta-analysis. Res. Synth. Methods 2, 61–76 (2011).

    Article  PubMed  Google Scholar 

  64. Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

    Article  Google Scholar 

  65. Rosenthal, R. The ‘file drawer problem’ and tolerance for null results. Psychol. Bull. 86, 638–641 (1979).

    Article  Google Scholar 

  66. Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 624–629 (1997).

    Google Scholar 

  67. Ingram, T. et al. Intraguild predation drives evolutionary niche shift in threespine stickleback. Evolution 66, 1819–1832 (2012).

    Article  PubMed  Google Scholar 

  68. Rudman, S. M. et al. Adaptive genetic variation mediates bottom-up and top-down control in an aquatic ecosystem. Proc. R. Soc. B 282, 20151234 (2015).

    Article  CAS  Google Scholar 

  69. Rudman, S. M. & Schluter, D. Ecological impacts of reverse speciation in threespine stickleback. Curr. Biol. 26, 490–495 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  71. Post, D. M., Palkovacs, E. P., Schielke, E. G. & Dodson, S. I. Intraspecific variation in a predator affects community structure and cascading trophic interactions. Ecology 89, 2019–2032 (2008).

    Article  PubMed  Google Scholar 

  72. Howeth, J. G., Weis, J. J., Brodersen, J., Hatton, E. C. & Post, D. M. Intraspecific phenotypic variation in a fish predator affects multitrophic lake metacommunity structure. Ecol. Evol. 3, 5031–5044 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Katano, O. Effects of individual differences in foraging of pale chub on algal biomass through trophic cascades. Environ. Biol. Fishes 92, 101–112 (2011).

    Article  Google Scholar 

  74. Palkovacs, E. P. et al. Experimental evaluation of evolution and coevolution as agents of ecosystem change in Trinidadian streams. Phil. Trans. R. Soc. B 364, 1617–1628 (2009).

    Article  Google Scholar 

  75. Bassar, R. D. et al. Local adaptation in Trinidadian guppies alters ecosystem processes. Proc. Natl Acad. Sci. USA 107, 3616–3621 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  76. McArt, S. H., Cook-Patton, S. C. & Thaler, J. S. Relationships between arthropod richness, evenness, and diversity are altered by complementarity among plant genotypes. Oecologia 168, 1013–1021 (2012).

    Article  PubMed  Google Scholar 

  77. Shuster, S. M., Lonsdorf, E. V., Wimp, G. M., Bailey, J. K. & Whitham, T. G. Community heritability measures the evolutionary consequences of indirect genetic effects on community structure. Evolution 60, 991–1003 (2006).

    Article  CAS  PubMed  Google Scholar 

  78. Schweitzer, J. A. et al. Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89, 773–781 (2008).

    Article  PubMed  Google Scholar 

  79. Lojewski, N. R. et al. Genetic basis of aboveground productivity in two native Populus species and their hybrids. Tree Physiol. 29, 1133–1142 (2009).

    Article  PubMed  Google Scholar 

  80. Lojewski, N. R. et al. Genetic components to belowground carbon fluxes in a riparian forest ecosystem: a common garden approach. New Phytol. 195, 631–639 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the researchers who made their data available for our analysis. We thank K. Kroeker for helpful conversations about the analyses and R. M. Segnitz and members of the Palkovacs Lab for help with preparation of the paper. Funding was provided by the Quebec Centre for Biodiversity Science, bioGENESIS, Future Earth, University of California Institute for the Study of Ecological and Evolutionary Climate Impacts, David and Lucile Packard Foundation and the National Science Foundation (DEB no. 1457333 and DEB no. 1556378).

Author information

Authors and Affiliations

Authors

Contributions

All authors developed the study idea and participated in data collection. S.D., D.M.P., N.E.T. and E.P.P. performed the statistical analyses. S.D., D.M.P. and E.P.P. led the writing of the paper. All authors prepared and edited the final drafts.

Corresponding author

Correspondence to Simone Des Roches.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Table 1, Supplementary Figure 1

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Des Roches, S., Post, D.M., Turley, N.E. et al. The ecological importance of intraspecific variation. Nat Ecol Evol 2, 57–64 (2018). https://doi.org/10.1038/s41559-017-0402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0402-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing