Article | Published:

Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

Nature Ecology & Evolutionvolume 2pages5056 (2018) | Download Citation

Abstract

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands—those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)—had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

  2. 2.

    Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, & Human Wellbeing: An Ecological and Economic Perspective Vol. 44 (Oxford Univ. Press, Oxford, 2010).

  3. 3.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).

  4. 4.

    Loreau, M. et al. Ecology-biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804–808 (2001).

  5. 5.

    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).

  6. 6.

    Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).

  7. 7.

    van der Plas, F. et al. Biotic homogenization can decrease landscape-scale forest multifunctionality. Proc. Natl Acad. Sci. USA 113, 3557–3562 (2016).

  8. 8.

    Pasari, J. R., Levia, T., Zavaletaa, E. S. & Tilman, D. Several scales of biodiversity affect ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 110, 10219–10222 (2013).

  9. 9.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  10. 10.

    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

  11. 11.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

  12. 12.

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

  13. 13.

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

  14. 14.

    Ferrier, S. et al. Mapping more of terrestrial biodiversity for global conservation assessment. Bioscience 54, 1101–1109 (2004).

  15. 15.

    Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).

  16. 16.

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

  17. 17.

    Hector, A. & Bagchi, R. Biodiversity and ecosystem multifunctionality. Nature 448, 188–190 (2007).

  18. 18.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

  19. 19.

    Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 63–73 (2013).

  20. 20.

    Mori, A. S. et al. Low multifunctional redundancy of soil fungal diversity at multiple scales. Ecol. Lett. 19, 249–259 (2016).

  21. 21.

    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evol. 5, 111–124 (2014).

  22. 22.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).

  23. 23.

    Zavaleta, E. S., Pasari, J. R., Hulvey, K. B. & Tilman, G. D. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443–1446 (2010).

  24. 24.

    Gotelli, N. J., Ulrich, W. & Maestre, F. T. Randomization tests for quantifying species importance to ecosystem function. Methods Ecol. Evol. 2, 634–642 (2011).

  25. 25.

    Calcagno, V. & de Mazancourt, C. glmulti: an R package for easy automated model selection with (generalized) linear models. J. Stat. Softw. 34, 1–29 (2010).

  26. 26.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

  27. 27.

    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).

  28. 28.

    Jing, X. et al. The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nat. Commun. 6, 9159 (2015).

  29. 29.

    Olson, J. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44, 322–331 (1963).

  30. 30.

    O’Halloran, L. R. et al. Regional contingencies in the relationship between aboveground biomass and litter in the world’s grasslands. PLoS ONE 8, e54988 (2013).

  31. 31.

    Gamfeldt, L., Hillebrand, H. & Jonsson, P. R. Multiple functions increase the importance of biodiversity for overall ecosystem functioning. Ecology 89, 1223–1231 (2008).

  32. 32.

    Peter, H. et al. Multifunctionality and diversity in bacterial biofilms. PLoS ONE 6, e23225 (2011).

  33. 33.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

  34. 34.

    Hautier, Y. et al. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 508, 521–525 (2014).

  35. 35.

    He, J. Z., Ge, Y., Xu, Z. H. & Chen, C. R. Linking soil bacterial diversity to ecosystem multifunctionality using backward-elimination boosted trees analysis. J. Soils Sediments 9, 547–554 (2009).

  36. 36.

    McCullagh, P. & Nelder, J. A. Generalized Linear Models 2nd edn (Chapman & Hall/CRC, Boca Raton, 1989).

  37. 37.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, New York, 2002).

  38. 38.

    Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).

  39. 39.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012).

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 298935 to Y.H. (with A.H. and E.W.S.). This work was generated using data from the Nutrient Network (http://www.nutnet.org) experiment, funded at the site scale by individual researchers. Coordination and data management have been supported by funding from the National Science Foundation Research Coordination Network (NSF-DEB-1042132) to E.T.B. and E.W.S, and from the Long Term Ecological Research (LTER) programme (NSF-DEB-1234162), and the Institute on the Environment at the University of Minnesota (DG-0001-13). We also thank the Minnesota Supercomputer Institute for hosting project data, and the Institute on the Environment for hosting Network meetings. We thank R. S. L. Veiga for suggestions that improved the manuscript.

Author information

Affiliations

  1. Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands

    • Yann Hautier
  2. Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA

    • Forest Isbell
    • , Elizabeth T. Borer
    • , Eric W. Seabloom
    •  & Eric M. Lind
  3. Department of Physiological Diversity, Helmholtz Center for Environmental Research – UFZ, Permoserstrasse 15, 04318, Leipzig, Germany

    • W. Stanley Harpole
    • , Anu Eskelinen
    •  & Risto Virtanen
  4. German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany

    • W. Stanley Harpole
    • , Anu Eskelinen
    •  & Risto Virtanen
  5. Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), Germany

    • W. Stanley Harpole
  6. Department of Integrative Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada

    • Andrew S. MacDougall
  7. Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK

    • Carly J. Stevens
  8. Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, 84322, USA

    • Peter B. Adler
  9. Instituto de Investigaciones Marinas y Costeras, UNMdP, CONICET, 7600, Mar del Plata, Argentina

    • Juan Alberti
    • , Pedro Daleo
    • , Oscar Iribarne
    •  & Jesus Pascual
  10. School of Environmental and Forest Sciences, University of Washington, Box 354115, Seattle, WA, 98195-4115, USA

    • Jonathan D. Bakker
  11. Department of Plant Biology and Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, MI, 48824, USA

    • Lars A. Brudvig
  12. School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland

    • Yvonne M. Buckley
  13. University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada

    • Marc Cadotte
  14. Forest Research Centre, School of Agriculture, University of Lisbon, 1349-017, Lisbon, Portugal

    • Maria C. Caldeira
  15. IFEVA-CONICET, Facultad de Agronomia, Universidad de Buenos Aires, Av. San Martin 4453, 1417, Buenos Aires, Argentina

    • Enrique J. Chaneton
    •  & Laura Yahdjian
  16. Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, 510275, Guangzhou, China

    • Chengjin Chu
  17. Desert Ecology Research Group, School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, 2006, Australia

    • Christopher R. Dickman
    •  & Glenda M. Wardle
  18. School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia

    • John M. Dwyer
  19. CSIRO Land & Water, EcoSciences Precinct, Dutton Park, Queensland, 4102, Australia

    • John M. Dwyer
  20. Ecology & Genetics, University of Oulu, FI-90014 University of Oulu, Oulu, Finland

    • Anu Eskelinen
    •  & Risto Virtanen
  21. USDA-ARS, Grassland Soil and Water Lab, 808 E Blackland Road, Temple, TX, 76502, USA

    • Philip A. Fay
  22. School of Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia

    • Jennifer Firn
  23. School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa

    • Nicole Hagenah
    •  & Kevin P. Kirkman
  24. South African Environmental Network (SAEON), Grasslands, Forests and Wetlands Node, Queen Elizabeth Park, 1 Peter Brown Drive, Pietermaritzburg, South Africa

    • Nicole Hagenah
  25. Institute for Chemistry and Biology of the Marine Environment, University Oldenburg, Oldenburg, Germany

    • Helmut Hillebrand
  26. School of Biological Sciences, University of Nebraska, Lincoln, NE, USA

    • Johannes M. H. Knops
  27. Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD, USA

    • Kimberly J. La Pierre
  28. Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546-0091, USA

    • Rebecca L. McCulley
  29. Department of Ecology, Environment and Evolution, La Trobe University, Bundoora, 3083, Victoria, Australia

    • John W. Morgan
  30. Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005, Tartu, Estonia

    • Meelis Pärtel
  31. Institute of Land, Water and Society, Charles Sturt University, Albury, New South Wales, 2640, Australia

    • Jodi N. Price
  32. CSIRO Land and Water, Private Bag 5, Wembley, Western Australia, 6913, Australia

    • Suzanne M. Prober
  33. Swiss Federal Institute of Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland

    • Anita C. Risch
  34. School of Biology, University of Leeds, Leeds, LS2 9JT, UK

    • Mahesh Sankaran
  35. National Centre for Biological Sciences, GKVK Campus, Bangalore, 560065, India

    • Mahesh Sankaran
  36. Swiss Federal Institute of Forest, Snow and Landscape Research, 8903, Birmensdorf, Switzerland

    • Martin Schuetz
  37. School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia

    • Rachel J. Standish
  38. Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK

    • Andy Hector

Authors

  1. Search for Yann Hautier in:

  2. Search for Forest Isbell in:

  3. Search for Elizabeth T. Borer in:

  4. Search for Eric W. Seabloom in:

  5. Search for W. Stanley Harpole in:

  6. Search for Eric M. Lind in:

  7. Search for Andrew S. MacDougall in:

  8. Search for Carly J. Stevens in:

  9. Search for Peter B. Adler in:

  10. Search for Juan Alberti in:

  11. Search for Jonathan D. Bakker in:

  12. Search for Lars A. Brudvig in:

  13. Search for Yvonne M. Buckley in:

  14. Search for Marc Cadotte in:

  15. Search for Maria C. Caldeira in:

  16. Search for Enrique J. Chaneton in:

  17. Search for Chengjin Chu in:

  18. Search for Pedro Daleo in:

  19. Search for Christopher R. Dickman in:

  20. Search for John M. Dwyer in:

  21. Search for Anu Eskelinen in:

  22. Search for Philip A. Fay in:

  23. Search for Jennifer Firn in:

  24. Search for Nicole Hagenah in:

  25. Search for Helmut Hillebrand in:

  26. Search for Oscar Iribarne in:

  27. Search for Kevin P. Kirkman in:

  28. Search for Johannes M. H. Knops in:

  29. Search for Kimberly J. La Pierre in:

  30. Search for Rebecca L. McCulley in:

  31. Search for John W. Morgan in:

  32. Search for Meelis Pärtel in:

  33. Search for Jesus Pascual in:

  34. Search for Jodi N. Price in:

  35. Search for Suzanne M. Prober in:

  36. Search for Anita C. Risch in:

  37. Search for Mahesh Sankaran in:

  38. Search for Martin Schuetz in:

  39. Search for Rachel J. Standish in:

  40. Search for Risto Virtanen in:

  41. Search for Glenda M. Wardle in:

  42. Search for Laura Yahdjian in:

  43. Search for Andy Hector in:

Contributions

Y.H., F.I. and A.H. developed and framed research questions. Y.H., F.I. and A.H. analysed the data and wrote the paper with contributions and input from all authors. E.T.B., E.W.S., K.L.P. and J.D.B. contributed to data analysis. E.W.S., E.T.B., W.S.H. and E.M.L. are Nutrient Network coordinators. All authors collected data used in this analysis. The author contribution matrix is provided as Supplementary Table 6.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Yann Hautier.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–8, Supplementary Tables 1–6

  2. Life Sciences Reporting Summary

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-017-0395-0

Further reading