Global patterns in marine predatory fish


Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal generalists that outcompete the pelagic specialists. Our findings demonstrate the vulnerability of large teleost predators to ecosystem-wide changes in energy flows and hence provide key insight to predict the responses of these important marine resources under global change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Conceptual figure illustrating the competitive interactions between large pelagic specialists and large demersal generalists that feed on smaller pelagic and/or demersal fish and invertebrates.
Fig. 2: Average weight fraction of large pelagic fish compared with large demersal fish in fisheries landings between 1970 and 2014.
Fig. 3: Relationships between the fraction of large pelagic fish in fisheries landings and the ratio of F photic versus F seabed for all ecoregions with available data (n = 217).
Fig. 4: Predictions of the dominance of large pelagic specialists or demersal generalists across marine ecoregions using a food-web model.


  1. 1.

    Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).

    Article  Google Scholar 

  3. 3.

    Heithaus, M. R., Frid, A., Wirsing, A. J. & Worm, B. Predicting ecological consequences of marine top predator declines. Trends Ecol. Evol. 23, 202–210 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Baum, J. K. & Worm, B. Cascading top-down effects of changing oceanic predator abundances. J. Anim. Ecol. 78, 699–714 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition For All (FAO, Rome, 2016).

  6. 6.

    Link, J. S., Bogstad, B., Sparholt, H. & Lilly, G. R. Trophic role of Atlantic cod in the ecosystem. Fish Fish. 10, 58–87 (2009).

    Article  Google Scholar 

  7. 7.

    Sibert, J., Hampton, J., Kleiber, P. & Maunder, M. Biomass, size, and trophic status of top predators in the Pacific Ocean. Science 314, 1773–1776 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Boyce, D. G., Tittensor, D. P. & Worm, B. Effects of temperature on global patterns of tuna and billfish richness. Mar. Ecol. Prog. Ser. 355, 267–276 (2008).

    Article  Google Scholar 

  9. 9.

    Worm, B. & Tittensor, D. P. Range contraction in large pelagic predators. Proc. Natl Acad. Sci. USA 108, 11942–11947 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Garrison, L. P. & Link, J. S. Dietary guild structure of the fish community in the northeast United States continental shelf ecosystem. Mar. Ecol. Prog. Ser. 202, 231–240 (2000).

    Article  Google Scholar 

  12. 12.

    Bulman, C., Althaus, F., He, X., Bax, N. J. & Williams, A. Diets and trophic guilds of demersal fishes of the south-eastern Australian shelf. Mar. Freshw. Res. 52, 537–548 (2001).

    Article  Google Scholar 

  13. 13.

    Byron, C. J. & Link, J. S. Stability in the feeding ecology of four demersal fish predators in the US Northeast Shelf Large Marine Ecosystem. Mar. Ecol. Prog. Ser. 406, 239–250 (2010).

    Article  Google Scholar 

  14. 14.

    López-López, L. et al. Is juvenile anchovy a feeding resource for the demersal community in the Bay of Biscay? On the availability of pelagic prey to demersal predators. ICES J. Mar. Sci. 69, 1394–1402 (2012).

    Article  Google Scholar 

  15. 15.

    Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 170039 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioScience 57, 573–583 (2007).

    Article  Google Scholar 

  17. 17.

    Branch, T. A. et al. The trophic fingerprint of marine fisheries. Nature 468, 431–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ricard, D., Minto, C., Jensen, O. P. & Baum, J. K. Examining the knowledge base and status of commercially exploited marine species with the RAM Legacy Stock Assessment Database. Fish Fish. 13, 380–398 (2012).

    Article  Google Scholar 

  19. 19.

    Sumaila, U. R., Marsden, A. D., Watson, R. & Pauly, D. A global ex-vessel fish price database: construction and applications. J. Bioeconomics 9, 39–51 (2007).

    Article  Google Scholar 

  20. 20.

    Suess, E. Particulate organic carbon flux in the oceans—surface productivity and oxygen utilization. Nature 288, 260–263 (1980).

    Article  CAS  Google Scholar 

  21. 21.

    Pomeroy, L. R. & Deibel, D. O. N. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233, 359–361 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. & McCarthy, J. J. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles 14, 1231–1246 (2000).

    Article  CAS  Google Scholar 

  23. 23.

    Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. 112, C10011 (2007).

    Article  CAS  Google Scholar 

  24. 24.

    Dunne, J. P., Armstrong, R. A., Gnanadesikan, A. & Sarmiento, J. L. Empirical and mechanistic models for the particle export ratio. Glob. Biogeochem. Cycles 19, GB4026 (2005).

    Article  CAS  Google Scholar 

  25. 25.

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Mackintosh, N. A. The pattern of distribution of the Antarctic fauna. Proc. R. Soc. Lond. B. 152, 624–631 (1960).

    Article  Google Scholar 

  27. 27.

    Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T. & Worm, B. Current and future patterns of global marine mammal biodiversity. PLoS ONE 6, e19653 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Davidson, L. N. K., Krawchuk, M. A. & Dulvy, N. K. Why have global shark and ray landings declined: improved management or overfishing? Fish Fish. 17, 438–458 (2016).

    Article  Google Scholar 

  29. 29.

    Drapeau, L., Pecquerie, L., Fréon, P. & Shannon, L. J. Quantification and representation of potential spatial interactions in the southern Benguela ecosystem. African J. Mar. Sci. 26, 141–159 (2004).

    Article  Google Scholar 

  30. 30.

    Brodeur, R. D., Buchanan, J. C. & Emmett, R. L. Pelagic and demersal fish predators on juvenile and adult forage fishes in the Northern California Current: spatial and temporal variations. CalCOFI Rep. 55, 96–116 (2014).

    Google Scholar 

  31. 31.

    McDaniel, J., Piner, K., Lee, H. H. & Hill, K. Evidence that the migration of the northern subpopulation of Pacific sardine (Sardinops sagax) off the west coast of the United States is age-based. PLoS ONE 11, e0166780 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Varpe, Ø., Fiksen, Ø. & Slotte, A. Meta-ecosystems and biological energy transport from ocean to coast: the ecological importance of herring migration. Oecologia 146, 443–451 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Killen, S. S. et al. Ecological influences and morphological correlates of resting and maximal metabolic rates across teleost fish species. Am. Nat. 187, 592–606 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Watanabe, Y. Y., Goldman, K. J., Caselle, J. E., Chapman, D. D. & Papastamatiou, Y. P. Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes. Proc. Natl Acad. Sci. USA 112, 6104–6109 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl Acad. Sci. USA 114, E1441–E1449 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Brander, K. M. Global fish production and climate change. Proc. Natl Acad. Sci. USA 104, 19709–19714 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res.-Oceans 117, C04031 (2012).

    Article  Google Scholar 

  38. 38.

    Sarmiento, J. L. et al. Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18, GB3003 (2004).

    Article  CAS  Google Scholar 

  39. 39.

    Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).

    Article  CAS  Google Scholar 

  41. 41.

    Compagno, L. J. V. in Sharks of the Open Ocean: Biology, Fisheries and Conservation (eds Camhi, M. D., Pikitch, E. K. & Babcock, E. A.) Ch. 3 (Blackwell, Oxford, 2008).

  42. 42.

    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).

    Article  CAS  Google Scholar 

  43. 43.

    Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Morel, A. & Berthon, J.-F. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr. 34, 1545–1562 (1989).

    Article  CAS  Google Scholar 

  45. 45.

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. A 34, 267–285 (1987).

    Article  CAS  Google Scholar 

  46. 46.

    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis NOAA Technical Memorandum NESDIS NGDC-24 (NOAA, Boulder, 2009).

  47. 47.

    Ward, C. L., McCann, K. S. & Rooney, N. HSS revisited: multi-channel processes mediate trophic control across a productivity gradient. Ecol. Lett. 18, 1190–1197 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Richardson, K., Visser, A. W. & Pedersen, F. B. Subsurface phytoplankton blooms fuel pelagic production in the North Sea. J. Plankton Res. 22, 1663–1671 (2000).

    Article  Google Scholar 

  49. 49.

    Schulien, J. A., Behrenfeld, M. J., Hair, J. W., Hostetler, C. A. & Twardowski, M. S. Vertically-resolved phytoplankton carbon and net primary production from a high spectral resolution lidar. Opt. Express 25, 13577–13587 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Davison, P. C., Checkley, D. M., Koslow, J. A. & Barlow, J. Carbon export mediated by mesopelagic fishes in the northeast Pacific Ocean. Prog. Oceanogr. 116, 14–30 (2013).

    Article  Google Scholar 

  52. 52.

    Siegel, D. A. et al. Global assessment of ocean carbon export by combining satellite observations and food-web models. Glob. Biogeochem. Cycles 28, 181–196 (2014).

    Article  CAS  Google Scholar 

  53. 53.

    Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).

    Article  Google Scholar 

  54. 54.

    Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE 10, e0133794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Smithson, M. & Verkuilen, J. A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychol. Methods 11, 54–71 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    South, A. rworldmap: a new R package for mapping global data. R J. 3, 35–43 (2011).

    Article  Google Scholar 

Download references


We thank N. S. Jacobsen for help with the RAM Legacy Stock Assessment Database, C. A. Stock for advice on the energy fluxes, U. R. Sumaila for making the global fish prices available and H. van Someren Gréve for Fig. 1,3 and 4 fish illustrations. P.D.v.D., M.L. and K.H.A. conducted the work within the Centre for Ocean Life—a Villum Kann Rasmussen Center of Excellence supported by the Villum Foundation. P.D.v.D. received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under Research Executive Agency grant agreement number 609405 (COFUNDPostdocDTU). M.L. is supported by a VILLUM Young Investigator grant (13159). R.A.W. acknowledges support from the Australian Research Council (Discovery Project DP140101377).

Author information




P.D.v.D., M.L., B.R.M. and K.H.A. conceived the study. R.A.W. contributed fisheries landings data. P.D.v.D. performed the research with support from M.L. and K.H.A. P.D.v.D., M.L. and K.H.A. wrote the paper. All authors contributed to interpretation of the results and commented on the paper.

Corresponding author

Correspondence to P. Daniël van Denderen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–7, Supplementary Tables 1–6

Life Sciences Reporting Summary

Supplementary Data

Information per ecoregion on the fraction pelagic fish in landings, environmental variables and the food-web model outcome

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

van Denderen, P.D., Lindegren, M., MacKenzie, B.R. et al. Global patterns in marine predatory fish. Nat Ecol Evol 2, 65–70 (2018).

Download citation

Further reading


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing