Foraging constraints reverse the scaling of activity time in carnivores

Abstract

The proportion of time an animal spends actively foraging in a day determines its long-term fitness. Here, we derive a general mathematical model for the scaling of this activity time with body size in consumers. We show that this scaling can change from positive (increasing with size) to negative (decreasing with size) if the detectability and availability of preferred prey sizes is a limiting factor. These predictions are supported by a global dataset on 73 terrestrial carnivore species from 8 families spanning >3 orders of magnitude in size. Carnivores weighing 5 kg experience high foraging costs because their diets include significant proportions of relatively small (invertebrate) prey. As a result, they show an increase in activity time with size. This shifts to a negative scaling in larger carnivores as they shift to foraging on less costly vertebrate prey. Our model can be generalized to other classes of terrestrial and aquatic consumers and offers a general framework for mechanistically linking body size to population fitness and vulnerability in consumers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Size-scaling model of activity time in terrestrial carnivores.
Fig. 2: Observed size-scaling of the energy intake rate and activity proportions among carnivores.
Fig. 3: Scaling of intake rate and prey versus predator size (size ratio) among carnivores.

References

  1. 1.

    Woodroffe, R. & Ginsberg, J. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jetz, W., Carbone, C., Fulford, J. & Brown, J. H. The scaling of animal space use. Science 306, 266–268 (2004).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Article  PubMed  Google Scholar 

  4. 4.

    Miller, C. et al. Amur tiger (Panthera tigris altaica) energetic requirements: implications for conserving wild tigers. Biol. Conserv. 170, 120–129 (2014).

    Article  Google Scholar 

  5. 5.

    Peters, R. The Ecological Implications of Body Size 1st edn (Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  6. 6.

    Schmidt-Nielsen, K. Scaling: Why is Animal Size so Important? (Cambridge Univ. Press, Cambridge, 1984).

    Google Scholar 

  7. 7.

    Gorman, M., Mills, M., Raath, J. & Speakman, J. High hunting costs make African wild dogs vulnerable to kleptoparasitism by hyaenas. Nature 852, 1992–1994 (1998).

    Google Scholar 

  8. 8.

    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Speakman, J. R. & Król, E. Maximal heat dissipation capacity and hyperthermia risk: neglected key factors in the ecology of endotherms. J. Anim. Ecol. 79, 726–746 (2010).

    PubMed  Google Scholar 

  10. 10.

    Hudson, L. N., Isaac, N. J. B. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).

    Article  PubMed Central  PubMed  Google Scholar 

  11. 11.

    Weibel, E. R., Bacigalupe, L. D., Schmitt, B. & Hoppeler, H. Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir. Physiol. Neurobiol. 140, 115–132 (2004).

    Article  PubMed  Google Scholar 

  12. 12.

    McGill, B. J. & Mittelbach, G. G. An allometric vision and motion model to predict prey encounter rates. Evol. Ecol. Res. 8, 691–701 (2006).

    Google Scholar 

  13. 13.

    Pawar, S., Dell, A. I. & Savage, V. M. Dimensionality of consumer search space drives trophic interaction strengths. Nature 486, 485–489 (2012).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Pawar, S., Dell, A. I. & Savage, V. M. in Aquatic Functional Biodiversity: An Ecological and Evolutionary Perspective (eds Belgrano, A., Woodward, G. & Jacob, U.) 3–36 (Academic, Cambridge, 2015).

  15. 15.

    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Carbone, C., Codron, D., Scofield, C., Clauss, M. & Bielby, J. Geometric factors influencing the diet of vertebrate predators in marine and terrestrial environments. Ecol. Lett. 17, 1553–1559 (2014).

    Article  PubMed Central  PubMed  Google Scholar 

  17. 17.

    Carbone, C., Mace, G., Roberts, S. & Macdonald, D. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 1997–2000 (1999).

    Google Scholar 

  18. 18.

    Kiltie, R. A. Scaling of visual acuity with body size. Funct. Ecol. 14, 226–234 (2000).

    Article  Google Scholar 

  19. 19.

    Field, D. J. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4, 2379–2394 (1987).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Wilson, R. P. et al. Turn costs change the value of animal search paths. Ecol. Lett. 16, 1145–1150 (2013).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Blake, R. W. & Domenici, P. Biomechanics in Animal Behaviour (BIOS Scientific, Oxford, 2000).

    Google Scholar 

  22. 22.

    DeLong, J. P. & Vasseur, D. A. A dynamic explanation of size–density scaling in carnivores. Ecology 93, 470–476 (2012).

    Article  PubMed  Google Scholar 

  23. 23.

    Vucic-pestic, O. et al. Allometric functional response model: body masses constrain interaction strengths. J. Anim. Ecol. 79, 249–256 (2010).

    Article  PubMed  Google Scholar 

  24. 24.

    De Vries, J. L., Pirk, C. W. W., Bateman, P. W., Cameron, E. Z. & Dalerum, F. Extension of the diet of an extreme foraging specialist, the aardwolf (Proteles cristata). African Zool. 46, 194–196 (2011).

    Google Scholar 

  25. 25.

    Van Valkenburgh, B. Deja vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163 (2007).

    Article  PubMed  Google Scholar 

  26. 26.

    Taylor, C. R., Heglund, N. C. & Maloiy, G. M. Energetics and mechanics of terrestrial locomotion. I. Metabolic energy consumption as a function of speed and body size in birds and mammals. J. Exp. Biol. 97, 1–21 (1982).

    CAS  PubMed  Google Scholar 

  27. 27.

    Pawar, S., Dell, A. I. & Savage, V. M. Pawar et al. reply. Nature 493, E2–E3 (2013).

    CAS  Article  Google Scholar 

  28. 28.

    Dell, A. I., Pawar, S. & Savage, V. M. Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy. J. Anim. Ecol. 83, 70–84 (2014).

    Article  PubMed  Google Scholar 

  29. 29.

    Shipley, L. A., Gross, J. E., Spalinger, D. E., Hobbs, N. T. & Wunder, B. A. The scaling of intake rate in mammalian herbivores. Am. Nat. 143, 1055–1082 (1994).

    Article  Google Scholar 

  30. 30.

    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budgets of mammals in the Western Ghats of India. J. Trop. Ecol. 31, 315–323 (2015).

    Article  Google Scholar 

  31. 31.

    Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C. & Jansen, P. A. Quantifying levels of animal activity using camera trap data. Methods Ecol. Evol. 5, 1170–1179 (2014).

    Article  Google Scholar 

  32. 32.

    Von Buddenbrock, W. Über die kinetische und statische leistung großer und kleiner tiere und ihre bedeutung für den gesamtstoffwechsel. Naturwissenschaften 40, 675–680 (1934).

    Article  Google Scholar 

  33. 33.

    Huwaldt, J. A. Plot Digitizer (2014); http://plotdigitizer.sourceforge.net

  34. 34.

    Gittleman, J. L. Carnivore Behavior, Ecology, and Evolution 1st edn (Chapman & Hall, London, 1989).

    Google Scholar 

  35. 35.

    Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. R. Soc. B 281, 20142103 (2014).

    Article  Google Scholar 

  36. 36.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2015).

    Google Scholar 

  37. 37.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat 125, 1–15 (1985).

    Article  Google Scholar 

  38. 38.

    Nyakatura, K. & Bininda-Emonds, O. R. P. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol. 10, 12–43 (2012).

    Article  PubMed Central  PubMed  Google Scholar 

  39. 39.

    Harmon, L., Weir, J., Brock, C., Glor, R. & Challenger, W. Geiger: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Muggeo, V. M. R. segmented: an R package to fit regression models with broken-line relationships. R News 8, 20–25 (2008).

    Google Scholar 

  41. 41.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-131 (R Foundation for Statistical Computing, Vienna, 2017).

Download references

Acknowledgements

We thank V. Muggeo and D.-G. Kontopoulos for advice on the phylogenetically independent contrast and phylogenetic piecewise regression analyses. S.P. was supported by grant NE/M004740/1 awarded by the Natural Environmental Research Council and the Grand Challenges in Ecosystems and the Environment Initiative at Imperial College London.

Author information

Affiliations

Authors

Contributions

M.R., C.C. and S.P. designed the study. S.P. developed the mathematical model. M.R. performed the data compilation and analyses and wrote the first draft of the paper. All authors substantially revised the paper.

Corresponding authors

Correspondence to Matteo Rizzuto or Samraat Pawar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Information, Supplementary Figures 1–10, Supplementary Tables 1–5 and Supplementary References

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rizzuto, M., Carbone, C. & Pawar, S. Foraging constraints reverse the scaling of activity time in carnivores. Nat Ecol Evol 2, 247–253 (2018). https://doi.org/10.1038/s41559-017-0386-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing