The architecture of mutualistic networks as an evolutionary spandrel

  • Nature Ecology & Evolutionvolume 2pages9499 (2018)
  • doi:10.1038/s41559-017-0383-4
  • Download Citation
Published online:


Mutualistic networks have been shown to involve complex patterns of interactions among animal and plant species, including a widespread presence of nestedness. The nested structure of these webs seems to be positively correlated with higher diversity and resilience. Moreover, these webs exhibit marked measurable structural patterns, including broad distributions of connectivity, strongly asymmetrical interactions and hierarchical organization. Hierarchical organization is an especially interesting property, since it is positively correlated with biodiversity and network resilience, thus suggesting potential selection processes favouring the observed web organization. However, here we show that all these structural quantitative patterns—and nestedness in particular—can be properly explained by means of a very simple dynamical model of speciation and divergence with no selection-driven coevolution of traits. The agreement between observed and modelled networks suggests that the patterns displayed by real mutualistic webs might actually represent evolutionary spandrels.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

  2. 2.

    Montoya, J. M., Pimm, S. & Solé, R. Ecological networks and their fragility. Nature 442, 259–264 (2006).

  3. 3.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

  4. 4.

    Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

  5. 5.

    Montoya, J. M. & Solé, R. V. Small world patterns in food webs. J. Theor. Biol. 214, 405–412 (2002).

  6. 6.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

  7. 7.

    Olesen, J. et al. The smallest of all worlds: pollination networks. J. Theor. Biol 240, 270–276 (2006).

  8. 8.

    Bascompte, J. et al. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

  9. 9.

    Fortuna, M. A., Stouffer, D. B. & Olesen, J. M. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

  10. 10.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

  11. 11.

    Memmott, J. et al. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

  12. 12.

    Joppa, L. N. & Williams, R. Modeling the building blocks of biodiversity. PLoS ONE 8, e56277 (2013).

  13. 13.

    Joppa, L. N., Montoya, J. M., Solé, R., Sanderson, J. & Pimm, S. L. On nestednes in ecological networks. Ecol. Evol. Res. 12, 35–46 (2010).

  14. 14.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 648–3652 (2011).

  15. 15.

    Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).

  16. 16.

    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).

  17. 17.

    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

  18. 18.

    Jonhson, S., Dominguez-Garcia, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e74025 (2013).

  19. 19.

    Lynch, M. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8, 803–813 (2007).

  20. 20.

    Solé, R., Ferrer Cancho, R., Montoya, J. & Valverde, S. Selection, tinkering, and emergence in complex networks. Complexity 8, 20–33 (2003).

  21. 21.

    Banzhaf, W. & Kuo, P. D. Network motifs in natural and artificial transcriptional regulatory networks. J. Biol. Phys. Chem. 4, 85–92 (2004).

  22. 22.

    Mazurie, A. et al. An evolutionary and functional assessment of regulatory network motifs. Genome Biol. 6, R35 (2005).

  23. 23.

    Rodriguez-Caso, C., Medina, M. A. & Solé, R. V. Topology, tinkering and evolution of the human transcription factor network. FEBS J. 272, 6423–6434 (2005).

  24. 24.

    Jacob, F. Evolution and tinkering. Science 196, 1161–166 (1977).

  25. 25.

    Solé, R. V., Pastor-Satorras, R., Smith, E. & Kepler, T. A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002).

  26. 26.

    Solé, R. V. & Valverde, S. Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5, 129–133 (2008).

  27. 27.

    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).

  28. 28.

    McComb, W. D. Renormalization Methods: A Guide For Beginners (Oxford Univ. Press, Oxford, 2008).

  29. 29.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598 (1979).

  30. 30.

    Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, Cambridge, 2002)

  31. 31.

    Dennett, D. C. Darwin’s Dangerous Idea (Simon and Schuster, New York, 1995).

  32. 32.

    Solé, R. & Valverde, S. Are network motifs the spandrels of cellular complexity? Trends Ecol. Evol. 21, 419–422 (2006).

  33. 33.

    Kauffman, S. A. & Johnsen, J. Coevolution to the edge of chaos: coupled fitness landscapes, poised states and coevolutionary avalanches. J. Theor. Biol. 149, 467–505 (1991).

  34. 34.

    Solé, R. V. & Manrubia, S. C. Extinctions and self-organised criticality in a model of large-scale evolution. Phys. Rev. E 54, R42–R46 (1995).

  35. 35.

    Christensen, K., Di Collobiano, S. A., Hall, M. & Jensen, H. J. Tangled nature: a model of evolutionary ecology. J. Theor. Biol. 216, 73–84 (2002).

  36. 36.

    Newman, M. E. J. & Palmer, R. Modelling Extinction (Oxford Univ. Press, New York, 2003).

  37. 37.

    Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of random networks. Adv. Phys. 51, 1079–1187 (2002).

  38. 38.

    Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Phil. Trans. R. Soc. B 365, 49–60 (2010).

  39. 39.

    Solé, R. V. & Bascompte, J. Self-Organization in Complex Ecosystems (Princeton Univ. Press, Princeton, 2006).

  40. 40.

    Barrat, A., Barthélémy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).

  41. 41.

    Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

  42. 42.

    Gilarranz, L. J., Pastor, J. M. & Galeano, J. The architecture of weighted mutualistic networks. Oikos 121, 1154–1162 (2012).

  43. 43.

    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries and coevolution. Am. Nat. 129, 657–677 (1987).

  44. 44.

    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).

  45. 45.

    Nuismer, S. L., Jordano, P. & Bascompte, J. Coevolution and the architecture of mutualistic networks. Evolution 67, 338–354 (2013).

  46. 46.

    Vazquez, A. Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E67, 056104 (2003).

  47. 47.

    Jonhson, S., Dominguez-Garcia, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e70452 (2013).

  48. 48.

    Feng, W. & Takemoto, K. Heterogeneity in ecological mutualistic networks dominantly determines community stability. Sci. Rep. 4, 5912 (2014).

  49. 49.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

  50. 50.

    O’Dwyer, J. P., Kembel, S. W. & Sharpton, T. J. Backbones of evolutionary history test biodiversity theory for microbes. Proc. Natl Acad. Sci. USA 112, 8356–8361 (2015).

Download references


The authors thank S. Pimm and the members of the Complex Systems Lab for useful comments and discussions. This work was supported by the Botín Foundation by Banco Santander through its Santander Universities Global Division, the Spanish Ministry of Economy and Competitiveness, grant FIS2016-77447-R MINEICO/AEI/FEDER and European Union (to S.V.). J.M. is supported by the French Laboratory of Excellence TULIP (ANR-10-LABX-41 and ANR-11-IDEX-0002-02), the Region Midi-Pyrenees project (CNRS 121090) and the FRAGCLIM Consolidator Grant, funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 726176). We also thank the Centre for Living Technology and the Santa Fe Institute, where most of this work was done.

Author information


  1. ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003, Barcelona, Spain

    • Sergi Valverde
    • , Jordi Piñero
    •  & Ricard Solé
  2. Institute of Evolutionary Biology (CSIC-UPF), 37–49 Passeig de la Barceloneta, 08003, Barcelona, Spain

    • Sergi Valverde
    • , Jordi Piñero
    •  & Ricard Solé
  3. European Centre for Living Technology, San Marco 2940, 30124, Venice, Italy

    • Sergi Valverde
  4. Section for the Science of Complex Systems, CeMSIIS, Medical University of Vienna, Spitalgasse 23, A-1090, Vienna, Austria

    • Bernat Corominas-Murtra
  5. Vienna Complexity Science Hub, Josefstadterstrasse 39, 1080, Vienna, Austria

    • Bernat Corominas-Murtra
  6. Theoretical and Experimental Ecology Station, CNRS-University Paul Sabatier, Moulis, 09200, France

    • Jose Montoya
  7. Microsoft Research, Cambridge, CB1 2FB, UK

    • Lucas Joppa
  8. Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA

    • Ricard Solé


  1. Search for Sergi Valverde in:

  2. Search for Jordi Piñero in:

  3. Search for Bernat Corominas-Murtra in:

  4. Search for Jose Montoya in:

  5. Search for Lucas Joppa in:

  6. Search for Ricard Solé in:


S.V. and R.S. conceived the study, developed the model and prepared the manuscript. B.C.-M. and J.P. developed the theoretical framework; S.V., J.P. and R.S. collected and analysed the data. J.M and L.J. assisted with the study design, conceptual advances and manuscript preparation. All authors wrote the paper, discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Sergi Valverde or Ricard Solé.

Electronic supplementary material

  1. Supplementary Information

    Supplementary data, figures and equations.

  2. Life Sciences Reporting Summary.