The architecture of mutualistic networks as an evolutionary spandrel

Abstract

Mutualistic networks have been shown to involve complex patterns of interactions among animal and plant species, including a widespread presence of nestedness. The nested structure of these webs seems to be positively correlated with higher diversity and resilience. Moreover, these webs exhibit marked measurable structural patterns, including broad distributions of connectivity, strongly asymmetrical interactions and hierarchical organization. Hierarchical organization is an especially interesting property, since it is positively correlated with biodiversity and network resilience, thus suggesting potential selection processes favouring the observed web organization. However, here we show that all these structural quantitative patterns—and nestedness in particular—can be properly explained by means of a very simple dynamical model of speciation and divergence with no selection-driven coevolution of traits. The agreement between observed and modelled networks suggests that the patterns displayed by real mutualistic webs might actually represent evolutionary spandrels.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mutualistic webs and how to model their evolution.
Fig. 2: Connectivity patterns in evolved in silico mutualistic webs.
Fig. 3: Higher-order correlations and network asymmetries.
Fig. 4: Nested evolved networks.

References

  1. 1.

    Solé, R. V. & Montoya, J. M. Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B 268, 2039–2045 (2001).

    Article  Google Scholar 

  2. 2.

    Montoya, J. M., Pimm, S. & Solé, R. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    Article  CAS  Google Scholar 

  3. 3.

    Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    Article  CAS  Google Scholar 

  4. 4.

    Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Montoya, J. M. & Solé, R. V. Small world patterns in food webs. J. Theor. Biol. 214, 405–412 (2002).

    Article  Google Scholar 

  6. 6.

    Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: the role of connectance and size. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).

    Article  CAS  Google Scholar 

  7. 7.

    Olesen, J. et al. The smallest of all worlds: pollination networks. J. Theor. Biol 240, 270–276 (2006).

    Article  Google Scholar 

  8. 8.

    Bascompte, J. et al. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    Article  CAS  Google Scholar 

  9. 9.

    Fortuna, M. A., Stouffer, D. B. & Olesen, J. M. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  Google Scholar 

  10. 10.

    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    Article  CAS  Google Scholar 

  11. 11.

    Memmott, J. et al. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Article  Google Scholar 

  12. 12.

    Joppa, L. N. & Williams, R. Modeling the building blocks of biodiversity. PLoS ONE 8, e56277 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Joppa, L. N., Montoya, J. M., Solé, R., Sanderson, J. & Pimm, S. L. On nestednes in ecological networks. Ecol. Evol. Res. 12, 35–46 (2010).

    Google Scholar 

  14. 14.

    Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 648–3652 (2011).

    Article  Google Scholar 

  15. 15.

    Saavedra, S., Rohr, R. P., Olesen, J. M. & Bascompte, J. Nested species interactions promote feasibility over stability during the assembly of a pollinator community. Ecol. Evol. 6, 997–1007 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Staniczenko, P. P. A., Kopp, J. C. & Allesina, S. The ghost of nestedness in ecological networks. Nat. Commun. 4, 1391 (2013).

    Article  CAS  Google Scholar 

  17. 17.

    James, A., Pitchford, J. W. & Plank, M. J. Disentangling nestedness from models of ecological complexity. Nature 487, 227–230 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Jonhson, S., Dominguez-Garcia, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e74025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Lynch, M. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8, 803–813 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Solé, R., Ferrer Cancho, R., Montoya, J. & Valverde, S. Selection, tinkering, and emergence in complex networks. Complexity 8, 20–33 (2003).

    Article  Google Scholar 

  21. 21.

    Banzhaf, W. & Kuo, P. D. Network motifs in natural and artificial transcriptional regulatory networks. J. Biol. Phys. Chem. 4, 85–92 (2004).

    Article  CAS  Google Scholar 

  22. 22.

    Mazurie, A. et al. An evolutionary and functional assessment of regulatory network motifs. Genome Biol. 6, R35 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rodriguez-Caso, C., Medina, M. A. & Solé, R. V. Topology, tinkering and evolution of the human transcription factor network. FEBS J. 272, 6423–6434 (2005).

    Article  CAS  Google Scholar 

  24. 24.

    Jacob, F. Evolution and tinkering. Science 196, 1161–166 (1977).

    Article  CAS  Google Scholar 

  25. 25.

    Solé, R. V., Pastor-Satorras, R., Smith, E. & Kepler, T. A model of large-scale proteome evolution. Adv. Complex Syst. 5, 43–54 (2002).

    Article  Google Scholar 

  26. 26.

    Solé, R. V. & Valverde, S. Spontaneous emergence of modularity in cellular networks. J. R. Soc. Interface 5, 129–133 (2008).

    Article  Google Scholar 

  27. 27.

    Jordano, P., Bascompte, J. & Olesen, J. M. Invariant properties in coevolutionary networks of plant–animal interactions. Ecol. Lett. 6, 69–81 (2003).

    Article  Google Scholar 

  28. 28.

    McComb, W. D. Renormalization Methods: A Guide For Beginners (Oxford Univ. Press, Oxford, 2008).

  29. 29.

    Gould, S. J. & Lewontin, R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc. R. Soc. Lond. B 205, 581–598 (1979).

    Article  CAS  Google Scholar 

  30. 30.

    Gould, S. J. The Structure of Evolutionary Theory (Harvard Univ. Press, Cambridge, 2002)

  31. 31.

    Dennett, D. C. Darwin’s Dangerous Idea (Simon and Schuster, New York, 1995).

  32. 32.

    Solé, R. & Valverde, S. Are network motifs the spandrels of cellular complexity? Trends Ecol. Evol. 21, 419–422 (2006).

    Article  Google Scholar 

  33. 33.

    Kauffman, S. A. & Johnsen, J. Coevolution to the edge of chaos: coupled fitness landscapes, poised states and coevolutionary avalanches. J. Theor. Biol. 149, 467–505 (1991).

    Article  CAS  Google Scholar 

  34. 34.

    Solé, R. V. & Manrubia, S. C. Extinctions and self-organised criticality in a model of large-scale evolution. Phys. Rev. E 54, R42–R46 (1995).

    Article  Google Scholar 

  35. 35.

    Christensen, K., Di Collobiano, S. A., Hall, M. & Jensen, H. J. Tangled nature: a model of evolutionary ecology. J. Theor. Biol. 216, 73–84 (2002).

    Article  Google Scholar 

  36. 36.

    Newman, M. E. J. & Palmer, R. Modelling Extinction (Oxford Univ. Press, New York, 2003).

  37. 37.

    Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of random networks. Adv. Phys. 51, 1079–1187 (2002).

    Article  Google Scholar 

  38. 38.

    Loreau, M. Linking biodiversity and ecosystems: towards a unifying ecological theory. Phil. Trans. R. Soc. B 365, 49–60 (2010).

    Article  Google Scholar 

  39. 39.

    Solé, R. V. & Bascompte, J. Self-Organization in Complex Ecosystems (Princeton Univ. Press, Princeton, 2006).

  40. 40.

    Barrat, A., Barthélémy, M., Pastor-Satorras, R. & Vespignani, A. The architecture of complex weighted networks. Proc. Natl Acad. Sci. USA 101, 3747–3752 (2004).

    Article  CAS  Google Scholar 

  41. 41.

    Bascompte, J. & Jordano, P. Plant–animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593 (2007).

    Google Scholar 

  42. 42.

    Gilarranz, L. J., Pastor, J. M. & Galeano, J. The architecture of weighted mutualistic networks. Oikos 121, 1154–1162 (2012).

    Article  Google Scholar 

  43. 43.

    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries and coevolution. Am. Nat. 129, 657–677 (1987).

    Article  Google Scholar 

  44. 44.

    Suweis, S., Simini, F., Banavar, J. R. & Maritan, A. Emergence of structural and dynamical properties of ecological mutualistic networks. Nature 500, 449–452 (2013).

    Article  CAS  Google Scholar 

  45. 45.

    Nuismer, S. L., Jordano, P. & Bascompte, J. Coevolution and the architecture of mutualistic networks. Evolution 67, 338–354 (2013).

    Article  Google Scholar 

  46. 46.

    Vazquez, A. Growing network with local rules: preferential attachment, clustering hierarchy, and degree correlations. Phys. Rev. E67, 056104 (2003).

    Google Scholar 

  47. 47.

    Jonhson, S., Dominguez-Garcia, V. & Muñoz, M. A. Factors determining nestedness in complex networks. PLoS ONE 8, e70452 (2013).

    Article  CAS  Google Scholar 

  48. 48.

    Feng, W. & Takemoto, K. Heterogeneity in ecological mutualistic networks dominantly determines community stability. Sci. Rep. 4, 5912 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    Article  CAS  Google Scholar 

  50. 50.

    O’Dwyer, J. P., Kembel, S. W. & Sharpton, T. J. Backbones of evolutionary history test biodiversity theory for microbes. Proc. Natl Acad. Sci. USA 112, 8356–8361 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Pimm and the members of the Complex Systems Lab for useful comments and discussions. This work was supported by the Botín Foundation by Banco Santander through its Santander Universities Global Division, the Spanish Ministry of Economy and Competitiveness, grant FIS2016-77447-R MINEICO/AEI/FEDER and European Union (to S.V.). J.M. is supported by the French Laboratory of Excellence TULIP (ANR-10-LABX-41 and ANR-11-IDEX-0002-02), the Region Midi-Pyrenees project (CNRS 121090) and the FRAGCLIM Consolidator Grant, funded by the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement number 726176). We also thank the Centre for Living Technology and the Santa Fe Institute, where most of this work was done.

Author information

Affiliations

Authors

Contributions

S.V. and R.S. conceived the study, developed the model and prepared the manuscript. B.C.-M. and J.P. developed the theoretical framework; S.V., J.P. and R.S. collected and analysed the data. J.M and L.J. assisted with the study design, conceptual advances and manuscript preparation. All authors wrote the paper, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Sergi Valverde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary data, figures and equations.

Life Sciences Reporting Summary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valverde, S., Piñero, J., Corominas-Murtra, B. et al. The architecture of mutualistic networks as an evolutionary spandrel. Nat Ecol Evol 2, 94–99 (2018). https://doi.org/10.1038/s41559-017-0383-4

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing