Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid morphological change of a top predator with the invasion of a novel prey

Abstract

Invasive exotic species are spreading rapidly throughout the planet. These species can have widespread impacts on biodiversity, yet the ability for native species, particularly long-lived vertebrates, to respond rapidly to invasions remains mostly unknown. Here we provide evidence of rapid morphological change in the endangered snail kite (Rostrhamus sociabilis) across its North American range with the invasion of a novel prey, the island apple snail (Pomacea maculata), a much larger congener of the kite’s native prey. In less than one decade since invasion, snail kite bill size and body mass increased substantially. Larger bills should be better suited to extracting meat from the larger snail shells, and we detected strong selection on increased size through juvenile survival. Using pedigree data, we found evidence of both genetic and environmental influences on trait expression and discovered that additive genetic variation in bill size increased with invasion. However, trends in predicted breeding values emphasize that recent morphological changes have been driven primarily by phenotypic plasticity rather than micro-evolutionary change. Our findings suggest that evolutionary change may be imminent and underscore that even long-lived vertebrates can respond quickly to invasive species. Furthermore, these results highlight that phenotypic plasticity may provide a crucial role for predators experiencing rapid environmental change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The endangered snail kite, its novel prey and the invasion across the kite’s geographic range.
Fig. 2: Rapid change in morphology, but not predicted breeding values, of fledgling snail kites with the invasion of P. maculata.
Fig. 3: Snail kites with large bills and larger mass were more likely to survive the first year of life since the invasion of P. maculata.
Fig. 4: Variance components of morphology of snail kites in invaded and uninvaded wetlands suggest cryptic genetic variation for morphology.

References

  1. 1.

    Vitousek, P. M., D'Antonio, C. M., Loope, L. L., Rejmanek, M. & Westbrooks, R. Introduced species: a significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).

    Google Scholar 

  2. 2.

    Maron, J. L., Vila, M., Bommarco, R., Elmendorf, S. & Beardsley, P. Rapid evolution of an invasive plant. Ecol. Monogr. 74, 261–280 (2004).

    Article  Google Scholar 

  3. 3.

    Hanfling, B. & Kollmann, J. An evolutionary perspective of biological invasions. Trends Ecol. Evol. 17, 545–546 (2002).

    Article  Google Scholar 

  4. 4.

    Shine, R. Invasive species as drivers of evolutionary change: cane toads in tropical Australia. Evol. Appl. 5, 107–116 (2012).

    Article  Google Scholar 

  5. 5.

    Sih, A., Ferrari, M. C. O. & Harris, D. J. Evolution and behavioural responses to human-induced rapid environmental change. Evol. Appl. 4, 367–387 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Moran, E. V. & Alexander, J. M. Evolutionary responses to global change: lessons from invasive species. Ecol. Lett. 17, 637–649 (2014).

    Article  Google Scholar 

  7. 7.

    Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).

    Article  Google Scholar 

  8. 8.

    Carroll, S. P. et al. And the beak shall inherit — evolution in response to invasion. Ecol. Lett. 8, 944–951 (2005).

    Article  Google Scholar 

  9. 9.

    Prentis, P. J., Wilson, J. R. U., Dormontt, E. E., Richardson, D. M. & Lowe, A. J. Adaptive evolution in invasive species. Trends Plant Sci. 13, 288–294 (2008).

    Article  CAS  Google Scholar 

  10. 10.

    Langkilde, T. Invasive fire ants alter behavior and morphology of native lizards. Ecology 90, 208–217 (2009).

    Article  Google Scholar 

  11. 11.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Berthon, K. How do native species respond to invaders? Mechanistic and trait-based perspectives. Biol. Invasions 17, 2199–2211 (2015).

    Article  Google Scholar 

  13. 13.

    Phillips, B. L. & Shine, R. Adapting to an invasive species: toxic cane toads induce morphological change in Australian snakes. Proc. Natl Acad. Sci. USA 101, 17150–17155 (2004).

    Article  CAS  Google Scholar 

  14. 14.

    Hayes, K. A., Cowie, R. H., Thiengo, S. C. & Strong, E. E. Comparing apples with apples: clarifying the identities of two highly invasive neotropical Ampullariidae (Caenogastropoda). Zool. J. Linn. Soc. 166, 723–753 (2012).

    Article  Google Scholar 

  15. 15.

    Reichert, B. E. et al. in The Birds of North America Online (ed. Poole, A.) https://doi.org/10.2173/bna.171 (Cornell Lab of Ornithology, Ithaca, 2015).

  16. 16.

    Rawlings, T. A., Hayes, K. A., Cowie, R. H. & Collins, T. M. The identity, distribution, and impacts of non-native apple snails in the continental United States. BMC Evol. Biol. 7, 97 (2007).

  17. 17.

    Cattau, C. E., Fletcher, R. J. Jr, Reichert, B. E. & Kitchens, W. M. Counteracting effects of a non-native prey on the demography of a native predator culminate in positive population growth. Ecol. Appl. 26, 1952–1968 (2016).

    Article  Google Scholar 

  18. 18.

    Darby, P. C., Mellow, D. J. & Watford, M. L. Food-handling difficulties for snail kites capturing non-native apple snails. Fla. Field Nat. 35, 79–85 (2007).

    Google Scholar 

  19. 19.

    Cattau, C. E., Martin, J. & Kitchens, W. M. Effects of an exotic prey species on a native specialist: example of the snail kite. Biol. Conserv. 143, 513–520 (2010).

    Article  Google Scholar 

  20. 20.

    Martin, J., Kitchens, W. M., Cattau, C. E. & Oli, M. K. Relative importance of natural disturbances and habitat degradation on snail kite population dynamics. Endanger. Species Res. 6, 25–39 (2008).

    Article  Google Scholar 

  21. 21.

    Saul, W.-C. & Jeschke, J. M. Eco-evolutionary experience in novel species interactions. Ecol. Lett. 18, 236–245 (2015).

    Article  Google Scholar 

  22. 22.

    Wilcox, R. & Fletcher, R. J. Jr. Experimental test of preferences for an invasive prey by an endangered predator: implications for conservation. PLoS ONE 11, e0165427 (2016).

  23. 23.

    Snyder, N. F. R. & Snyder, H. A. A comparative study of mollusk predastion by limpkins, Everglade kites, and boat-tailed grackles. Living Bird 8, 177–223 (1969).

    Google Scholar 

  24. 24.

    Sykes, P. W. Jr. The feeding habits of the snail kite in Florida, USA. Colon. Waterbirds 10, 84–92 (1987).

    Article  Google Scholar 

  25. 25.

    Strauss, S. Y., Lau, J. A. & Carroll, S. P. Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol. Lett. 9, 354–371 (2006).

    Article  Google Scholar 

  26. 26.

    Stockwell, C. A., Hendry, A. P. & Kinnison, M. T. Contemporary evolution meets conservation biology. Trends Ecol. Evol. 18, 94–101 (2003).

    Article  Google Scholar 

  27. 27.

    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).

    Article  Google Scholar 

  28. 28.

    Morrissey, M. B. & Sakrejda, K. Unification of regression-based methods for the analysis of natural selection. Evolution 67, 2094–2100 (2013).

    Article  Google Scholar 

  29. 29.

    Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004).

    Article  Google Scholar 

  30. 30.

    Wilson, A. J. et al. An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26 (2010).

    Article  Google Scholar 

  31. 31.

    Merila, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hansen, T. F., Pelabon, C. & Houle, D. Heritability is not evolvability. Evol. Biol. 38, 258–277 (2011).

    Article  Google Scholar 

  33. 33.

    Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5, 681–690 (2004).

    Article  CAS  Google Scholar 

  34. 34.

    Hadfield, J. D., Wilson, A. J., Garant, D., Sheldon, B. C. & Kruuk, L. E. B. The misuse of BLUP in ecology and evolution. Am. Nat. 175, 116–125 (2010).

    Article  Google Scholar 

  35. 35.

    Falconer, S. & Mackay, T. F. C. Introduction to Quantitative Genetics 4th edn (Pearson Education, Harlow, 1996).

  36. 36.

    Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).

    Article  CAS  Google Scholar 

  37. 37.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).

    Article  Google Scholar 

  38. 38.

    Paaby, A. B. & Rockman, M. V. Cryptic genetic variation: evolution’s hidden substrate. Nat. Rev. Genet. 15, 247–258 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford Univ. Press, New York, 2003).

  40. 40.

    Postma, E. Implications of the difference between true and predicted breeding values for the study of natural selection and micro-evolution. J. Evol. Biol. 19, 309–320 (2006).

    Article  CAS  Google Scholar 

  41. 41.

    Merila, J., Kruuk, L. E. B. & Sheldon, B. C. Natural selection on the genetical component of variance in body condition in a wild bird population. J. Evol. Biol. 14, 918–929 (2001).

    Article  Google Scholar 

  42. 42.

    Reale, D., McAdam, A. G., Boutin, S. & Berteaux, D. Genetic and plastic responses of a northern mammal to climate change. Proc. R. Soc. Lond. B 270, 591–596 (2003).

    Article  Google Scholar 

  43. 43.

    Morrissey, M. B., Kruuk, L. E. B. & Wilson, A. J. The danger of applying the breeder’s equation in observational studies of natural populations. J. Evol. Biol. 23, 2277–2288 (2010).

    Article  CAS  Google Scholar 

  44. 44.

    Beissinger, S. R. & Snyder, N. F. R. Mate desertion in the snail kite. Anim. Behav. 35, 477–487 (1988).

    Article  Google Scholar 

  45. 45.

    Lacombe, D., Bird, D. M. & Hibbard, K. A. Influence of reduced food availability on growth of captive American kestrels. Can. J. Zool. 72, 2084–2089 (1994).

    Article  Google Scholar 

  46. 46.

    Reichert, B. E., Kendall, W. L., Fletcher, R. J. Jr. & Kitchens, W. M. Spatio-temporal variation in age structure and abundance of the endangered snail kite: pooling across regions masks a declining and aging population. PLoS ONE 11, e0162690 (2016).

  47. 47.

    Griffith, S. C., Owens, I. P. F. & Thuman, K. A. Extra pair paternity in birds: a review of interspecific variation and adaptive function. Mol. Ecol. 11, 2195–2212 (2002).

    Article  CAS  Google Scholar 

  48. 48.

    Mougeot, F. Breeding density, cuckoldry risk and copulation behaviour during the fertile period in raptors: a comparative analysis. Anim. Behav. 67, 1067–1076 (2004).

    Article  Google Scholar 

  49. 49.

    Charmantier, A. & Reale, D. How do misassigned paternities affect the estimation of heritability in the wild? Mol. Ecol. 14, 2839–2850 (2005).

    Article  CAS  Google Scholar 

  50. 50.

    Firth, J. A., Hadfield, J. D., Santure, A. W., Slate, J. & Sheldon, B. C. The influence of nonrandom extra-pair paternity on heritability estimates derived from wild pedigrees. Evolution 69, 1336–1344 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Darby, P. C., Fujisaki, I. & Mellow, D. J. The effects of prey density on capture times and foraging success of course-hunting adult snail kites. Condor 114, 755–763 (2012).

    Article  Google Scholar 

  52. 52.

    Hespenheide, H. A. Ecological inferences from morphological data. Annu. Rev. Ecol. Syst. 4, 213–229 (1973).

    Article  Google Scholar 

  53. 53.

    Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296, 707–711 (2002).

    Article  CAS  Google Scholar 

  54. 54.

    Tornberg, R., Monkkonen, M. & Pahkala, M. Changes in diet and morphology of Finnish goshawks from 1960s to 1990s. Oecologia 121, 369–376 (1999).

    Article  CAS  Google Scholar 

  55. 55.

    Robertson, E. P., Fletcher, R. J. Jr & Austin, J. D. Microsatellite polymorphism in the endangered snail kite reveals a panmictic, low diversity population. Conserv. Genet. https://doi.org/10.1007/s10592-017-1003-1 (2017).

  56. 56.

    Bennetts, R. E. & Kitchens, W. M. Factors influencing movement probabilities of a nomadic food specialist: proximate foraging benefits or ultimate gains from exploration? Oikos 91, 459–467 (2000).

    Article  Google Scholar 

  57. 57.

    Reichert, B. E., Fletcher, R. J. Jr, Cattau, C. E. & Kitchens, W. M. Consistent scaling of population structure across landscapes despite intraspecific variation in movement and connectivity. J. Anim. Ecol. 85, 1563–1573 (2016).

    Article  Google Scholar 

  58. 58.

    Snyder, N. F. R., Beissinger, S. R. & Chandler, R. E. Reproduction and demography of the Florida Everglade (snail) kite. Condor 91, 300–316 (1989).

    Article  Google Scholar 

  59. 59.

    Rising, J. D. & Somers, K. M. The measurement of overall body size in birds. Auk 106, 666–674 (1989).

    Article  Google Scholar 

  60. 60.

    Newton, I. Population Ecology of Raptors (Poyser, London, 1979).

  61. 61.

    Field, D. J., Lynner, C., Brown, C. & Darroch, S. A. F. Skeletal correlates for body mass estimation in modern and fossil flying birds. PLoS ONE 8, e82000 (2013).

  62. 62.

    Price, T., Kirkpatrick, M. & Arnold, S. J. Directional selection and the evolution of breeding date in birds. Science 240, 798–799 (1988).

    Article  CAS  Google Scholar 

  63. 63.

    Beissinger, S. R. Mate Desertion and Reproductive Effort in the Snail Kite. PhD thesis, Univ. Michigan (1984).

  64. 64.

    Vannoordwijk, A. J., Vanbalen, J. H. & Scharloo, W. Heritability of body size in a natural population of the great tit (Parus major) and its relation to age and environmental conditions during growth. Genet. Res. 51, 149–162 (1988).

    Article  Google Scholar 

  65. 65.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

  66. 66.

    Martin, J., Kitchens, W. M. & Hines, J. E. Natal location influences movement and survival of a spatially structured population of snail kites. Oecologia 153, 291–301 (2007).

    Article  Google Scholar 

  67. 67.

    Kingsolver, J. G. et al. The strength of phenotypic selection in natural populations. Am. Nat. 157, 245–261 (2001).

    Article  CAS  Google Scholar 

  68. 68.

    Wood, S. N. Generalized Additive Models: an Introduction with R (Chapman & Hall and CRC, Boca Raton, 2006).

  69. 69.

    Charmantier, A. & Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 272, 1415–1425 (2005).

    Article  Google Scholar 

  70. 70.

    Stubben, C. & Milligan, B. Estimating and analyzing demographic models using the popbio package in R. J. Stat. Softw. 22, 1–23 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Orrock, B. Reichert, E. Robertson and M. Morrissey for providing comments on earlier versions of this manuscript. This project was funded by USGS’s Greater Everglades Priority Ecosystems Science (GEPES), the US Army Corps of Engineers, and US Fish and Wildlife Service.

Author information

Affiliations

Authors

Contributions

C.E.C. conducted the study; C.E.C., R.J.F., R.T.K. and C.W.M. analysed data; C.E.C. and R.J.F. wrote the initial manuscript; C.E.C., R.J.F., R.T.K., C.W.M. and W.M.K. edited the manuscript; W.M.K. and R.J.F. secured funding.

Corresponding author

Correspondence to Robert J. Fletcher Jr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–6, Supplementary Figures 1–4

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cattau, C.E., Fletcher Jr, R.J., Kimball, R.T. et al. Rapid morphological change of a top predator with the invasion of a novel prey. Nat Ecol Evol 2, 108–115 (2018). https://doi.org/10.1038/s41559-017-0378-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing