Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression

Abstract

To gain insight into how mammalian gene expression is controlled by rapidly evolving regulatory elements, we jointly analysed promoter and enhancer activity with downstream transcription levels in liver samples from 15 species. Genes associated with complex regulatory landscapes generally exhibit high expression levels that remain evolutionarily stable. While the number of regulatory elements is the key driver of transcriptional output and resilience, regulatory conservation matters: elements active across mammals most effectively stabilize gene expression. In contrast, recently evolved enhancers typically contribute weakly, consistent with their high evolutionary plasticity. These effects are observed across the entire mammalian clade and are robust to potential confounders, such as the gene expression level. Using liver as a representative somatic tissue, our results illuminate how the evolutionary stability of gene expression is profoundly entwined with both the number and conservation of surrounding promoters and enhancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Liver gene expression levels are highly conserved across 25 mammalian species.
Fig. 2: The number of promoters and enhancers corresponds with gene expression stability across evolution.
Fig. 3: Conserved regulatory activity is associated with both high and stable gene expression levels.
Fig. 4: Recently evolved enhancer activities contribute weakly to gene expression levels.
Fig. 5: Recurrent recently evolved regulatory elements contribute to gene expression stability.
Fig. 6: An integrated summary of the evolution of mammalian regulatory complexity.

Similar content being viewed by others

References

  1. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Moorthy, S. D. et al. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res. 27, 246–258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shin, H. Y. et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat. Genet. 48, 904–911 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cotney, J. et al. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154, 185–196 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xiao, S. et al. Comparative epigenomic annotation of regulatory DNA. Cell 149, 1381–1392 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vierstra, J. et al. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346, 1007–1012 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Villar, D. et al. Enhancer evolution across 20 mammalian species. Cell 160, 554–566 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reilly, S. K. et al. Evolutionary genomics. Evolutionary changes in promoter and enhancer activity during human corticogenesis. Science 347, 1155–1159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Young, R. S. et al. The frequent evolutionary birth and death of functional promoters in mouse and human. Genome Res. 25, 1546–1557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42, 631–634 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt, D. et al. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328, 1036–1040 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Brawand, D. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8, 33 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Merkin, J., Russell, C., Chen, P. & Burge, C. B. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338, 1593–1599 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prescott, S. L. et al. Enhancer divergence and cis-regulatory evolution in the human and chimp neural crest. Cell 163, 68–83 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reilly, S. K. & Noonan, J. P. Evolution of gene regulation in humans. Annu. Rev. Genom. Hum. Genet. 17, 45–67 (2016).

    Article  CAS  Google Scholar 

  17. Pai, A. A., Bell, J. T., Marioni, J. C., Pritchard, J. K. & Gilad, Y. A genome-wide study of DNA methylation patterns and gene expression levels in multiple human and chimpanzee tissues. PLoS Genet. 7, e1001316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wong, E. S. et al. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res. 25, 167–178 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paris, M. et al. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLoS Genet. 9, e1003748 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cain, C. E., Blekhman, R., Marioni, J. C. & Gilad, Y. Gene expression differences among primates are associated with changes in a histone epigenetic modification. Genetics 187, 1225–1234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Emera, D., Yin, J., Reilly, S. K., Gockley, J. & Noonan, J. P. Origin and evolution of developmental enhancers in the mammalian neocortex. Proc. Natl Acad. Sci. USA 113, E2617–E2626 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Arnold, C. D. et al. Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution. Nat. Genet. 46, 685–692 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chatterjee, S., Bourque, G. & Lufkin, T. Conserved and non-conserved enhancers direct tissue specific transcription in ancient germ layer specific developmental control genes. BMC Dev. Biol. 11, 63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Necsulea, A. & Kaessmann, H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat. Rev. Genet. 15, 734–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Flicek, P. et al. Ensembl 2013. Nucleic Acids Res. 41, D48–D55 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Sudmant, P. H., Alexis, M. S. & Burge, C. B. Meta-analysis of RNA-seq expression data across species, tissues and studies. Genome Biol. 16, 287 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Perry, G. H. et al. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 22, 602–610 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Eisenberg, E. & Levanon, E. Y. Human housekeeping genes, revisited. Trends Genet. 29, 569–574 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Odom, D. T. et al. Control of pancreas and liver gene expression by HNF transcription factors. Science 303, 1378–1381 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. She, X. et al. Definition, conservation and epigenetics of housekeeping and tissue-enriched genes. BMC Genomics 10, 269 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Israel, J. W. et al. Comparative developmental transcriptomics reveals rewiring of a highly conserved gene regulatory network during a major life history switch in the sea urchin genus Heliocidaris. PLoS Biol. 14, e1002391 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santos-Rosa, H. et al. Active genes are tri-methylated at K4 of histone H3. Nature 419, 407–411 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Creyghton, M. P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl Acad. Sci. USA 107, 21931–21936 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. McLean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet. 48, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sikora-Wohlfeld, W., Ackermann, M., Christodoulou, E. G., Singaravelu, K. & Beyer, A.Assessing computational methods for transcription factor target gene identification based on ChIP-seq data. PLoS Comput. Biol. 9, e1003342 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Odom, D. T. et al. Core transcriptional regulatory circuitry in human hepatocytes. Mol. Syst. Biol. 2, 2006.0017 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mikkelsen, T. S. et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell 143, 156–169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arnold, C. D. et al. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339, 1074–1077 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Jubb, A. W., Young, R. S., Hume, D. A. & Bickmore, W. A. Enhancer turnover is associated with a divergent transcriptional response to glucocorticoid in mouse and human macrophages. J. Immunol. 196, 813–822 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, Y. et al. Principles of regulatory information conservation between mouse and human. Nature 515, 371–375 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McLean, C. & Bejerano, G. Dispensability of mammalian DNA. Genome Res. 18, 1743–1751 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kvon, E. Z. et al. Progressive loss of function in a limb enhancer during snake evolution. Cell 167, 633–642.e11 (2016).

    Article  CAS  Google Scholar 

  48. Royo, J. L. et al. Transphyletic conservation of developmental regulatory state in animal evolution. Proc. Natl Acad. Sci. USA 108, 14186–14191 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wray, G. A. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8, 206–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975).

    Article  CAS  PubMed  Google Scholar 

  51. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wittkopp, P. J. & Kalay, G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat. Rev. Genet. 13, 59–69 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Lowdon, R. F., Jang, H. S. & Wang, T. Evolution of epigenetic regulation in vertebrate genomes. Trends Genet. 32, 269–283 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sundaram, V. et al. Widespread contribution of transposable elements to the innovation of gene regulatory networks. Genome Res. 24, 1963–1976 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cooper, G. M. & Brown, C. D. Qualifying the relationship between sequence conservation and molecular function. Genome Res. 18, 201–205 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Kellis, M. et al. Defining functional DNA elements in the human genome. Proc. Natl Acad. Sci. USA 111, 6131–6138 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhou, X. et al. Epigenetic modifications are associated with inter-species gene expression variation in primates. Genome Biol. 15, 547 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Villar, D., Flicek, P. & Odom, D. T. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15, 221–233 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kieffer-Kwon, K. R. et al. Interactome maps of mouse gene regulatory domains reveal basic principles of transcriptional regulation. Cell 155, 1507–1520 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Zeitlinger, J. & Stark, A. Developmental gene regulation in the era of genomics. Dev. Biol. 339, 230–239 (2010).

    Article  CAS  PubMed  Google Scholar 

  63. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pradeepa, M. M. et al. Histone H3 globular domain acetylation identifies a new class of enhancers. Nat. Genet. 48, 681–686 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. May, D. et al. Large-scale discovery of enhancers from human heart tissue. Nat. Genet. 44, 89–93 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Necsulea, A. et al. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Kutter, C. et al. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 8, e1002841 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dunn, C. W., Luo, X. & Wu, Z. Phylogenetic analysis of gene expression. Integr. Comp. Biol. 53, 847–856 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rohlfs, R. V., Harrigan, P. & Nielsen, R. Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for within-species variation. Mol. Biol. Evol. 31, 201–211 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Dunn, C. W., Zapata, F., Munro, C., Siebert, S. & Hejnol, A. Pairwise comparisons are problematic when analyzing functional genomic data across species. Preprint at https://www.biorxiv.org/content/early/2017/02/09/107177 (2017).

  71. Visel, A. et al. Functional autonomy of distant-acting human enhancers. Genomics 93, 509–513 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Arnosti, D. N. & Kulkarni, M. M. Transcriptional enhancers: intelligent enhanceosomes or flexible billboards? J. Cell. Biochem. 94, 890–898 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Biggin, M. D. Animal transcription networks as highly connected, quantitative continua. Dev. Cell 21, 611–626 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Long, H. K., Prescott, S. L. & Wysocka, J. Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167, 1170–1187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Panne, D. The enhanceosome. Curr. Opin. Struct. Biol. 18, 236–242 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. & Conesa, A. Differential expression in RNA-seq: a matter of depth. Genome Res. 21, 2213–2223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ho, D., Imai, K., King, G. & Stuart, E. A. MatchIt: nonparametric preprocessing for parametric causal inference. J. Stat. Softw. 42, 1–28 (2011).

    Article  Google Scholar 

  81. Neph, S. et al. BEDOPS: high-performance genomic feature operations. Bioinformatics 28, 1919–1920 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Cambridge Institute Biological Resources Unit and Genomics Core for technical support, C. Kutter, C. Feig, M. Roller and T. Rayner for useful comments and discussions, and the systems team at the European Molecular Biology Laboratory’s European Bioinformatics Institute for management of computational resources. This research was supported by Cancer Research UK grant 20412, European Research Council grant 615584, Wellcome Trust grants WT108749/Z/15/Z, WT098051, WT202878/A/16/Z and WT202878/B/16/Z, the Institut National de la Santé et de la Recherche Médicale and the European Molecular Biology Laboratory. Cetacean samples were collected by the UK Cetacean Strandings Investigation Programme, funded by Defra and the governments of Scotland and Wales. This is Duke Lemur Center publication no. 1362.

Author information

Authors and Affiliations

Authors

Contributions

C.B., D.V., P.F. and D.T.O. designed the experiments. D.V. performed the experiments. C.B. and D.V. analysed the data. J.E.H. aided in the selection of primate species and provided the tissue samples. C.B., D.V., P.F. and D.T.O. wrote the paper. P.F. and D.T.O. oversaw the work. All authors read and approved the final paper.

Corresponding authors

Correspondence to Duncan T. Odom or Paul Flicek.

Ethics declarations

Competing interests

P.F. is a member of the scientific advisory boards of Fabric Genomics and Eagle Genomics.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary text, Supplementary Figures 1–10, Supplementary Tables 1–2, Supplementary references.

Life Sciences Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berthelot, C., Villar, D., Horvath, J.E. et al. Complexity and conservation of regulatory landscapes underlie evolutionary resilience of mammalian gene expression. Nat Ecol Evol 2, 152–163 (2018). https://doi.org/10.1038/s41559-017-0377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0377-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research