Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predation drives local adaptation of phenotypic plasticity


Phenotypic plasticity is the ability of an individual genotype to alter aspects of its phenotype depending on the current environment. It is central to the persistence, resistance and resilience of populations facing variation in physical or biological factors. Genetic variation in plasticity is pervasive, which suggests its local adaptation is plausible. Existing studies on the adaptation of plasticity typically focus on single traits and a few populations, while theory about interactions among genes (for example, pleiotropy) suggests that a multi-trait, landscape scale (for example, multiple populations) perspective is required. We present data from a landscape scale, replicated, multi-trait experiment using a classic predator–prey system centred on the water flea Daphnia pulex. We find predator regime-driven differences in genetic variation of multivariate plasticity. These differences are associated with strong divergent selection linked to a predation regime. Our findings are evidence for local adaptation of plasticity, suggesting that responses of populations to environmental variation depend on the conditions in which they evolved in the past.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Univariate plasticity in the five traits.
Fig. 2: Genetic variance–covariance matrix visualizations for each treatment within each regime.
Fig. 3: Genetic variance–covariance matrix visualizations for each regime within each treatment.
Fig. 4: Multivariate Q ST – F ST analyses, following refs 23,25,26, showing evidence of strong divergent selection among all eight populations, estimated in each predation risk treatment; this is associated with predation regime (see text for details).


  1. Tollrian, R. & Harvell, C. D. The Ecology and Evolution of Inducible Defenses (Princeton Univ. Press, Princeton, 1999).

  2. Miner, B. G., Sultan, S. E., Morgan, S. G., Padilla, D. K. & Relyea, R. A. Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20, 685–692 (2005).

    Article  PubMed  Google Scholar 

  3. Pfennig, D. W. et al. Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol. Evol. 25, 459–467 (2010).

    Article  PubMed  Google Scholar 

  4. Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Draghi, J. A. & Whitlock, M. C. Phenotypic plasticity facilitates mutational variance, genetic variance, and evolvability along the major axis of environmental variation. Evolution 66, 2891–2902 (2012).

    Article  PubMed  Google Scholar 

  6. Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article  Google Scholar 

  8. Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    Article  PubMed  Google Scholar 

  9. Pigliucci, M. Evolution of phenotypic plasticity: where are we going now? Trends Ecol. Evol. 20, 481–486 (2005).

    Article  PubMed  Google Scholar 

  10. Via, S. & Lande, R. Genotype–environment interaction and the evolution of phenotypic plasticity. Evolution 39, 505–522 (1985).

    Article  PubMed  Google Scholar 

  11. Lind, M. I., Yarlett, K., Reger, J., Carter, M. J. & Beckerman, A. P. The alignment between phenotypic plasticity, the major axis of genetic variation and the response to selection. Proc. R. Soc. B 282, 20151651 (2015).

    Article  Google Scholar 

  12. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Taylor, B. E. & Gabriel, W. To grow or not to grow—optimal resource-allocation for Daphnia. Am. Nat. 139, 248–266 (1992).

    Article  Google Scholar 

  14. Tollrian, R. Predator-induced morphological defenses—costs, life-history shifts, and maternal effects in Daphnia pulex. Ecology 76, 1691–1705 (1995).

    Article  Google Scholar 

  15. Reznick, D. & Endler, J. A. The impact of predation on life-history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36, 160–177 (1982).

    PubMed  Google Scholar 

  16. Riessen, H. P. Predator-induced life history shifts in Daphnia: a synthesis of studies using meta-analysis. Can. J. Fish. Aquat. Sci. 56, 2487–2494 (1999).

    Article  Google Scholar 

  17. De Meester, L. & Weider, L. J. Depth selection behavior, fish kairomones, and the life histories of Daphnia hyalina × galeata hybrid clones. Limnol. Oceanogr. 44, 1248–1258 (1999).

    Article  Google Scholar 

  18. Tollrian, R. & Dodson, S. I. in The Ecology and Evolution of Inducible Defenses (eds Tollrian, R. & Harvell, C. D.) 177–202 (Princeton Univ. Press, Princeton, 1999).

  19. Tollrian, R. Neckteeth formation in Daphnia pulex as an example of continuous phenotypic plasticity—morphological effects of Chaoborus kairomone concentration and their quantification. J. Plankton Res. 15, 1309–1318 (1993).

    Article  Google Scholar 

  20. Dennis, S. R., Carter, M. J., Hentley, W. T. & Beckerman, A. P. Phenotypic convergence along a gradient of predation risk. Proc. R. Soc. B 278, 1687–1969 (2011).

    Article  CAS  Google Scholar 

  21. Robinson, M. R. & Beckerman, A. P. Quantifying multivariate plasticity: genetic variation in resource acquisition drives plasticity in resource allocation to components of life history. Ecol. Lett. 16, 281–290 (2013).

    Article  PubMed  Google Scholar 

  22. Calsbeek, B. & Goodnight, C. J. Empirical comparison of G matrix test statistics: finding biologically relevant change. Evolution 63, 2627–2635 (2009).

    Article  PubMed  Google Scholar 

  23. Karhunen, M., Merilä, J., Leinonen, T., Cano, J. M. & Ovaskainen, O. DRIFTSEL: an R package for detecting signals of natural selection in quantitative traits. Mol. Ecol. Resour. 13, 746–754 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Karhunen, M. & Ovaskainen, O. Estimating population-level coancestry coefficients by an admixture F model. Genetics 192, 609–617 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karhunen, M., Ovaskainen, O., Herczeg, G. & Merila, J. Bringing habitat information into statistical tests of local adaptation in quantitative traits: a case study of nine-spined sticklebacks. Evolution 68, 559–568 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Ovaskainen, O., Karhunen, M., Zheng, C., Arias, J. M. & Merilä, J. A new method to uncover signatures of divergent and stabilizing selection in quantitative traits. Genetics 189, 621–632 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lynch, M. et al. The quantitative and molecular genetic architecture of a subdivided species. Evolution 53, 100–110 (1999).

    Article  PubMed  Google Scholar 

  28. Reznick, D. The impact of predation on life history evolution in Trinidadian guppies: genetic basis of observed life history patterns. Evolution 36, 1236–1250 (1982).

    Article  PubMed  Google Scholar 

  29. Schmid, M. & Guillaume, F. The role of phenotypic plasticity on population differentiation. Heredity 119, 214–225 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hendry, A. P., Day, T. & Taylor, E. B. Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests. Evolution 55, 459–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hine, E., Chenoweth, S. F., Rundle, H. D. & Blows, M. W. Characterizing the evolution of genetic variance using genetic covariance tensors. Phil. Trans. R. Soc. B 364, 1567–1578 (2009).

    Article  Google Scholar 

  32. Aguirre, J. D., Hine, E., McGuigan, K. & Blows, M. W. Comparing G: multivariate analysis of genetic variation in multiple populations. Heredity 112, 21–29 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Delahaie, B. et al. Conserved G-matrices of morphological and life-history traits among continental and island blue tit populations. Heredity 119, 76–87 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gienapp, P. et al. Predicting demographically sustainable rates of adaptation: can great tit breeding time keep pace with climate change? Phil. Trans. R. Soc. B 368, 20120289 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chevin, L. M. & Lande, R. When do adaptive plasticity and genetic evolution prevent extinction of a density-regulated population? Evolution 64, 1143–1150 (2010).

    Article  PubMed  Google Scholar 

  36. Tollrian, R. & Dodson, S. in The Ecology and Evolution of Inducible Defenses (eds Tollrian, R. & Harvell, C. D.) 177–202 (Princeton Univ. Press, Princeton, 1999).

  37. Hammill, E., Rogers, A. & Beckerman, A. P. Costs, benefits and the evolution of inducible defences: a case study with Daphnia pulex. J. Evol. Biol. 21, 705–715 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Stibor, H. Predator induced life-history shifts in a freshwater cladoceran. Oecologia 92, 162–165 (1992).

    Article  PubMed  Google Scholar 

  39. Weider, L. & Pijanowska, J. Plasticity of Daphnia life histories in response to chemical cues from predators. Oikos 67, 385–392 (1993).

    Article  Google Scholar 

  40. Parejko, K. & Dodson, S. I. The evolutionary ecology of an antipredator reaction norm: Daphnia pulex and Chaoborus americanus. Evolution 45, 1665–1674 (1991).

    Article  PubMed  Google Scholar 

  41. Spitze, K. Chaoborus predation and life-history evolution in Daphnia pulex: temporal pattern of population diversity, fitness, and mean life history. Evolution 45, 82–92 (1991).

    Article  PubMed  Google Scholar 

  42. Spitze, K. Predator-mediated plasticity of prey life history and morphology: Chaoborus americanus predation on Daphnia pulex. Am. Nat. 139, 229–247 (1992).

    Article  Google Scholar 

  43. Beckerman, A. P., Rodgers, G. M. & Dennis, S. R. The reaction norm of size and age at maturity under multiple predator risk. J. Anim. Ecol. 79, 1069–1076 (2010).

    Article  PubMed  Google Scholar 

  44. Tollrian, R. Chaoborus crystallinus predation on Daphnia pulex: can induced morphological changes balance effects of body size on vulnerability? Oecologia 101, 151–155 (1995).

    Article  PubMed  Google Scholar 

  45. Cristescu, M. E., Colbourne, J. K., Radivojac, J. & Lynch, M. A microsatellite-based genetic linkage map of the waterflea, Daphnia pulex: on the prospect of crustacean genomics. Genomics 88, 415–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Reger, J. The Quantitative Genetic Basis of Inducible Defences and Life-History Plasticity in Daphnia pulex. PhD thesis, Univ. Sheffield (2013).

  47. Kenta, T. et al. Multiplex SNP-SCALE: a cost-effective medium-throughput single nucleotide polymorphism genotyping method. Mol. Ecol. Res. 8, 1230–1238 (2008).

    Article  CAS  Google Scholar 

  48. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

    Google Scholar 

  49. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

  50. Ovaskainen, O., Cano, J. M. & Merila, J. A Bayesian framework for comparative quantitative genetics. Proc. R. Soc. B 275, 669–678 (2008).

    Article  Google Scholar 

Download references


We thank S.R. Dennis, J. Slate and A. Bergland for constructive comments and discussion. M. Karhunen provided statistical advice and code support. J.R. was supported by a Natural Environment Research Council CASE PhD with support from the Freshwater Biological Association. M.I.L. was supported by the Swedish Research Council (623-2010-848). M.R.R. was supported by a Natural Environment Research Council early-career fellowship (NE/G013535/1) and is currently supported by the University of Lausanne. A.P.B. was supported by a Natural Environment Research Council standard grant (NE/D012244/1) and the University of Sheffield.

Author information

Authors and Affiliations



J.R. and A.P.B. designed the research. J.R. and M.I.L. collected the data. A.P.B. and M.R.R. developed the methods. J.R., A.P.B., M.R.R. and M.I.L. analysed the data and wrote the paper.

Corresponding author

Correspondence to Andrew P. Beckerman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary figures 1–4; supplementary tables 1–2.

Life Sciences Reporting Summary.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reger, J., Lind, M.I., Robinson, M.R. et al. Predation drives local adaptation of phenotypic plasticity. Nat Ecol Evol 2, 100–107 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing