A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts

Abstract

Biome function is largely governed by how efficiently available resources can be used and yet for water, the ratio of direct biological resource use (transpiration, E T) to total supply (annual precipitation, P) at ecosystem scales remains poorly characterized. Here, we synthesize field, remote sensing and ecohydrological modelling estimates to show that the biological water use fraction (E T/P) reaches a maximum under mesic conditions; that is, when evaporative demand (potential evapotranspiration, E P) slightly exceeds supplied precipitation. We estimate that this mesic maximum in E T/P occurs at an aridity index (defined as E P/P) between 1.3 and 1.9. The observed global average aridity of 1.8 falls within this range, suggesting that the biosphere is, on average, configured to transpire the largest possible fraction of global precipitation for the current climate. A unimodal E T/P distribution indicates that both dry regions subjected to increasing aridity and humid regions subjected to decreasing aridity will suffer declines in the fraction of precipitation that plants transpire for growth and metabolism. Given the uncertainties in the prediction of future biogeography, this framework provides a clear and concise determination of ecosystems' sensitivity to climatic shifts, as well as expected patterns in the amount of precipitation that ecosystems can effectively use.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Transpired fraction of rainfall.
Fig. 2: Peak plant water use across possible soil, climate and vegetation structures.
Fig. 3: Spatial patterns in aridity, transpiration and their inter-related sensitivity.

References

  1. 1.

    Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).

    Article  Google Scholar 

  2. 2.

    Polson, D. & Hegerl, G. C. Strengthening contrast between precipitation in tropical wet and dry regions. Geophys. Res. Lett. 44, 365–373 (2017).

    Article  Google Scholar 

  3. 3.

    Caylor, K. K., Scanlon, T. M., Rodriguez-Iturbe, I. & Rodríguez-Iturbe, I. Ecohydrological optimization of pattern and processes in water-limited ecosystems: a trade-off-based hypothesis. Water Resour. Res. 45, W08407 (2009).

    Article  Google Scholar 

  4. 4.

    Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl Acad. Sci. USA 111, 3251–3256 (2014).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Cheng, L. et al. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nat. Commun. 8, 110 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Del Grosso, S. et al. Global potential net primary production predicted from vegetation class, precipitation, and temperature. Ecology 89, 2117–2126 (2008).

    Article  PubMed  Google Scholar 

  7. 7.

    Huxman, T. E. et al. Convergence across biomes to a common rain-use efficiency. Nature 429, 651–654 (2004).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Bruijnzeel, L. A. & Veneklaas, E. J. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79, 3–9 (1998).

    Article  Google Scholar 

  9. 9.

    Schuur, E. A. G. Productivity and global climate revisited: the sensitivity of tropical forest growth to precipitation. Ecology 84, 1165–1170 (2003).

    Article  Google Scholar 

  10. 10.

    Smith, W. K. & McClean, T. M. Adaptive relationship between leaf water repellency, stomatal distribution, and gas exchange. J. Chem. Inf. Model. 96, 465–469 (1989).

    Google Scholar 

  11. 11.

    Taylor, P. G. et al. Temperature and rainfall interact to control carbon cycling in tropical forests. Ecol. Lett. 20, 779–788 (2017).

    Article  PubMed  Google Scholar 

  12. 12.

    Zhu, K., Chiariello, N. R., Tobeck, T., Fukami, T. & Field, C. B. Nonlinear, interacting responses to climate limit grassland production under global change. Proc. Natl Acad. Sci. USA 113, 10589–10594 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Sala, O. E., Parton, W. J., Joyce, L. A. & Lauenroth, W. K. Primary production of the central grassland region of the United States. Ecology 69, 40–45 (1988).

    Article  Google Scholar 

  14. 14.

    Mueller, K. E., Tilman, D., Fornara, D. A. & Hobbie, S. E. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology 94, 787–793 (2013).

    Article  Google Scholar 

  15. 15.

    Good, S. P. & Caylor, K. K. Climatological determinants of woody cover in Africa. Proc. Natl Acad. Sci. USA 108, 4902–4907 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Yang, Y. et al. Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Sci. Rep. 6, 23284 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bonell, M. Possible impacts of climate variability and change on tropical forest hydrology. Clim. Change 39, 215–272 (1998).

    Article  Google Scholar 

  19. 19.

    Foster, P. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Sci. Rev. 55, 73–106 (2001).

    Article  Google Scholar 

  20. 20.

    Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189–190, 115–117 (2014).

    Article  Google Scholar 

  21. 21.

    Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    Article  Google Scholar 

  22. 22.

    Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Miralles, D. G. et al. The WACMOS-ET project—part 2: evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842 (2016).

    Article  Google Scholar 

  24. 24.

    Wang, L. et al. The effect of warming on grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. Geochim. Cosmochim. Acta 111, 28–38 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    Article  Google Scholar 

  26. 26.

    Gibson, J. J. & Edwards, T. W. D. Regional water balance trends and evaporation—transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob. Biogeochem. Cycles 16, 10–11 (2002).

    Article  Google Scholar 

  27. 27.

    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Moore, G. W. & Heilman, J. L. Proposed principles governing how vegetation changes affect transpiration. Ecohydrology 4, 351–358 (2011).

    Article  Google Scholar 

  29. 29.

    Budyko, M. I. Climate and Life (Academic Press, New York, NY, 1974).

  30. 30.

    Porporato, A., Daly, E. & Rodríguez-Iturbe, I. Soil water balance and ecosystem response to climate change. Am. Nat. 164, 625–632 (2004).

    Article  PubMed  Google Scholar 

  31. 31.

    Laio, F., Porporato, A., Ridolfi, L., Rodríguez-Iturbe, I. & Ridol, L. Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv. Water Resour. 24, 707–723 (2001).

    Article  Google Scholar 

  32. 32.

    Wang, D., Wang, G. & Anagnostou, E. N. Evaluation of canopy interception schemes in land surface models. J. Hydrol. 347, 308–318 (2007).

    Article  Google Scholar 

  33. 33.

    Good, S. P., Guan, K. & Caylor, K. K. Global patterns of the contributions of storm frequency, intensity, and seasonality to interannual variability of precipitation. J. Clim. 29, 3–15 (2016).

    Article  Google Scholar 

  34. 34.

    Yang, Y., Donohue, R. J. & McVicar, T. R. Global estimation of effective plant rooting depth: implications for hydrological modeling. Water Resour. Res. 52, 8260–8276 (2016).

    Article  Google Scholar 

  35. 35.

    Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 126, 67–80 (2008).

    Article  Google Scholar 

  36. 36.

    Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).

    Article  Google Scholar 

  37. 37.

    Byrne, M. P., O’Gorman, P. A., Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: why the ‘wet-get-wetter, dry-get-drier’ scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  38. 38.

    Wu, H.-T. J. & Lau, W. K.-M. Detecting climate signals in precipitation extremes from TRMM (1998–2013)—increasing contrast between wet and dry extremes during the ‘global warming hiatus’. Geophys. Res. Lett. 43, 1340–1348 (2016).

    Article  Google Scholar 

  39. 39.

    Feng, X., Vico, G. & Porporato, A. On the effects of seasonality on soil water balance and plant growth. Water Resour. Res. 48, W05543 (2012).

    Article  Google Scholar 

  40. 40.

    Daly, E., Oishi, A. C., Porporato, A. & Katul, G. G. A stochastic model for daily subsurface CO2 concentration and related soil respiration. Adv. Water Resour. 31, 987–994 (2008).

    Article  Google Scholar 

  41. 41.

    Salvucci, G. D. Soil and moisture independent estimation of stage-two evaporation from potential evaporation and albedo or surface temperature. Water Resour. Res. 33, 111–122 (1997).

    Article  Google Scholar 

Download references

Acknowledgements

S.P.G. acknowledges the financial support of the Unites States National Aeronautics and Space Administration (NNX16AN13G). G.W.M. acknowledges the United States Department of Energy Biological and Environmental Research programme at the Office of Science for financial support (DE-SC0010654). D.G.M. acknowledges support from the European Research Council under grant agreement number 715254 (DRY-2-DRY). We acknowledge A. Jaimes for assistance with data analysis. We also acknowledge K. Caylor, L. Wang and I. Rodriguez-Iturbe for some early suggestions on this work.

Author information

Affiliations

Authors

Contributions

S.P.G. designed the study with input from G.W.M. and D.G.M. S.P.G. and G.W.M. compiled the field observations. S.P.G. and D.G.M. provided the remote-sensing-based observations. S.P.G. conducted the minimalistic model simulations. All authors wrote the paper.

Corresponding author

Correspondence to Stephen P. Good.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Good, S.P., Moore, G.W. & Miralles, D.G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat Ecol Evol 1, 1883–1888 (2017). https://doi.org/10.1038/s41559-017-0371-8

Download citation

Further reading