Phylogenetic evidence for mid-Cenozoic turnover of a diverse continental biota

Article metrics


Rapid climatic change at the beginning of the Oligocene epoch is concordant with global biotic turnover in the fossil record. However, while Southern Hemisphere geological movement played a key role in shaping these global climatic shifts, given generally poor terrestrial fossil records, evidence for matching turnover in entire Austral biotas is lacking. Emerging comprehensive phylogenetic frameworks provide alternative avenues to explore for signals of mass turnover or restructuring. Here, we combine phylogenetic data with empirical and simulation-based approaches to understand the temporal dynamics of the origins of a diverse and highly endemic continental biota (Australian lizards and snakes). These analyses indicate that the temporal clustering of major radiation ages in Gondwanan endemic lineages and immigration into Australia is narrower than expected under time-continuous models assuming no overarching external perturbation. Independent phylogenetic dating analyses further indicate that the timing of both processes is concentrated in the period post-dating the Eocene–Oligocene transition (~34 million years ago). Epoch-defining processes around the start of the Oligocene appear to have also played a decisive role in reshaping a diverse Southern Hemisphere biota—by both re-setting Gondwanan endemic diversity and opening the way to successful immigration from the north.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Phylogenetic position, age and origins of Australian squamates.

images: Mark Hutchinson (elapids, pythons, blindsnake, Eugongylus group, Sphenomorphus group and Ctenotus); Brad Maryan (Varanus, Crenadactylus and Pygopodidae); Paul Oliver (Gehyra and Agamids); and Juniors Bildarchiv GmbH/Alamy Stock Photo (Egernia).

Fig. 2: Crown and stem ages for extant Australian squamate groups.
Fig. 3: Maximum likelihood ancestral states and time-dependent BiSSE analyses of immigration into Australia.
Fig. 4: Observed versus expected temporal spread (s.d./mean) of crown ages for Australian lineages given the length of time they have been present in Australia.


  1. 1.

    Jablonski, D. Mass extinctions and macroevolution. Paleobiology 31, 192–210 (2005).

  2. 2.

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous–Paleogene boundary. Science 327, 1214–1218 (2010).

  3. 3.

    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).

  4. 4.

    Raup, D. & Sepkoski, J. J. Periodic extinction of families and genera. Science 231, 833–836 (1986).

  5. 5.

    Hooker, J. J., Collinson, M. E. & Sille, N. P. Eocene–Oligocene mammalian faunal turnover in the Hampshire Basin, UK: calibration to the global time scale and the major cooling event. J. Geol. Soc. Lond. 161, 161–172 (2004).

  6. 6.

    Augé, M. & Smith, R. An assemblage of early Oligocene lizards (Squamata) from the locality of Boutersem (Belgium), with comments on the Eocene–Oligocene transition. Zool. J. Linn. Soc. 155, 148–170 (2009).

  7. 7.

    Sun, J. et al. Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene boundary in Asia. Sci. Rep. 4, 7463 (2014).

  8. 8.

    McGowran, B., Holdgate, G. R., Li, Q. & Gallagher, S. J. Cenozoic stratigraphic succession in southeastern Australia. Aust. J. Earth Sci. 51, 459–496 (2004).

  9. 9.

    Jarvis, E. D. et al. Whole genome analyses resolve the early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

  10. 10.

    Meredith, R. W. et al. Impacts of the cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

  11. 11.

    Feng, Y.-J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864–E5870 (2017).

  12. 12.

    Stadler, T. Mammalian phylogeny reveals recent diversification rate shifts. Proc. Natl Acad. Sci. USA 108, 6187–6192 (2011).

  13. 13.

    Crisp, M. D. & Cook, L. G. Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63, 2257–2265 (2009).

  14. 14.

    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).

  15. 15.

    Lawver, L. A. & Gahagan, L. M. Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeogr. Palaeoclimatol. Palaeoecol. 198, 11–37 (2003).

  16. 16.

    Scher, H. D. et al. Onset of Antarctic circumpolar current 30 million years ago as Tasmanian Gateway aligned with westerlies. Nature 523, 580–583 (2015).

  17. 17.

    Rabosky, D. L. Challenges in the estimation of extinction from molecular phylogenies: a response to Beaulieu and O’Meara. Evolution 70, 218–228 (2016).

  18. 18.

    Beaulieu, J. M. & O’Meara, B. C. Extinction can be estimated from moderately sized molecular phylogenies. Evolution 69, 1036–1043 (2015).

  19. 19.

    Wilson, S. & Swan, G. A Complete Guide to Reptiles of Australia 5th edn (New Holland, Sydney, 2017).

  20. 20.

    Keast, A. (ed.) Ecological Biogeography of Australia (Springer, Dordrecht, 1981).

  21. 21.

    Brennan, I. G. & Oliver, P. M. Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 71, 1352–1365 (2017).

  22. 22.

    Oliver, P. M. & Bauer, A. M. Systematics and evolution of the Australian knob-tail geckos (Nephrurus, Carphodactylidae, Gekkota): plesiomorphic grades and biome shifts through the Miocene. Mol. Phylogenet. Evol. 59, 664–674 (2011).

  23. 23.

    Oliver, P. M. & Sanders, K. L. Molecular evidence for Gondwanan origins of multiple lineages within a diverse Australasian gecko radiation. J. Biogeogr. 36, 2044–2055 (2009).

  24. 24.

    Oliver, P. M., Adams, M. & Doughty, P. Molecular evidence for ten species and Oligo–Miocene vicariance within a nominal Australian gecko species (Crenadactylus ocellatus, Diplodactylidae). BMC Evol. Biol. 10, 386 (2010).

  25. 25.

    Skinner, A., Hugall, A. F. & Hutchinson, M. N. Lygosomine phylogeny and the origins of Australian scincid lizards. J. Biogeogr. 38, 1044–1058 (2011).

  26. 26.

    Chen, I., Stuart-fox, D., Hugall, A. F. & Symonds, M. R. E. Sexual selection and the evolution of complex color patterns in dragon lizards. Evolution 66, 3605–3614 (2012).

  27. 27.

    Heinicke, M. P., Greenbaum, E., Jackman, T. R. & Bauer, A. M. Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zool. Scr. 40, 584–602 (2011).

  28. 28.

    Vidal, N. et al. Molecular evidence for an Asian origin of monitor lizards followed by tertiary dispersals to Africa and Australasia. Biol. Lett. 8, 853–855 (2012).

  29. 29.

    Vidal, N. et al. Blindsnake evolutionary tree reveals long history on Gondwana. Biol. Lett. 6, 558–561 (2010).

  30. 30.

    Sanders, K. L., Lee, M. S. Y., Leys, R., Foster, R. & Keogh, J. S. Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): evidence from seven genes for rapid evolutionary radiations. J. Evol. Biol. 21, 682–695 (2008).

  31. 31.

    Scanlon, J. D. & Lee, M. S. Y. in Reproductive Biology and Phylogeny of Snakes (eds Sever, D. & Aldridge, R.) 55–95 (CRC, Boca Raton, 2010).

  32. 32.

    Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).

  33. 33.

    Hartmann, K., Wong, D. & Stadler, T. Sampling trees from evolutionary models. Syst. Biol. 59, 465–476 (2010).

  34. 34.

    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  35. 35.

    Fitzjohn, R. G. Diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol. Evol. 3, 1084–1092 (2012).

  36. 36.

    Schumacher, S. & Lazarus, D. Regional differences in pelagic productivity in the late Eocene to early Oligocene—a comparison of southern high latitudes and lower latitudes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214, 243–263 (2004).

  37. 37.

    Byrne, M. et al. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol. Ecol. 17, 4398–4417 (2008).

  38. 38.

    Byrne, M. et al. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J. Biogeogr. 38, 1635–1656 (2011).

  39. 39.

    Hooker, J. D. in Botany of the Antarctic Voyage of H.M. Discovery Ships Erebus and Terror in the Years 1839–1843, III. Flora Tasmaniae (ed. Hooker, J. D.) 1–36 (Reeve, London, 1860).

  40. 40.

    Crisp, M. D. & Cook, L. G. How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annu. Rev. Ecol. Evol. Syst. 44, 303–324 (2013).

  41. 41.

    Powney, G. D., Grenyer, R., Orme, C. D. L., Owens, I. P. F. & Meiri, S. Hot, dry and different: Australian lizard richness is unlike that of mammals, amphibians and birds. Glob. Ecol. Biogeogr. 19, 386–396 (2010).

  42. 42.

    Mitchell, K. J. et al. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol. Biol. Evol. 31, 2322–2330 (2014).

  43. 43.

    Schweizer, M., Seehausen, O. & Hertwig, S. T. Macroevolutionary patterns in the diversification of parrots: effects of climate change, geological events and key innovations. J. Biogeogr. 38, 2176–2194 (2011).

  44. 44.

    Sniderman, J. M. K. & Jordan, G. J. Extent and timing of floristic exchange between Australian and Asian rain forests. J. Biogeogr. 38, 1445–1455 (2011).

  45. 45.

    Maekawa, K., Lo, N., Rose, H. A. & Matsumoto, T. The evolution of soil-burrowing cockroaches (Blattaria: Blaberidae) from wood-burrowing ancestors following an invasion of the latter from Asia into Australia. Proc. R. Soc. Lond. B 270, 1301–1307 (2003).

  46. 46.

    Hugall, A. F. & Stanisic, J. Beyond the prolegomenon: a molecular phylogeny of the Australian camaenid land snail radiation. Zool. J. Linn. Soc. 161, 531–572 (2011).

  47. 47.

    Kurabayashi, A. et al. From Antarctica or Asia? New colonization scenario for Australian–New Guinean narrow mouth toads suggested from the findings on a mysterious genus Gastrophrynoides. BMC Evol. Biol. 11, 175 (2011).

  48. 48.

    Jønsson, K. A., Fabre, P., Ricklefs, R. E. & Fjeldså, J. Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proc. Natl Acad. Sci. USA 108, 2328–2333 (2010).

  49. 49.

    Brandley, M. C. et al. Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of plestiodon (Eumeces) lizards. Syst. Biol. 60, 3–15 (2011).

  50. 50.

    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

  51. 51.

    Ronquist, F. et al. Mrbayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

  52. 52.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

  53. 53.

    Sanderson, M. J. Evolution and divergence times in the absence of a molecular clock. Evolution 19, 301–302 (2003).

  54. 54.

    Foster, C. S. P. et al. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst. Biol. 66, 338–351 (2017).

  55. 55.

    Britton, T., Oxelman, B., Vinnersten, A. & Bremer, K. Phylogenetic dating with confidence intervals using mean path lengths. Mol. Phylogenet. Evol. 24, 58–65 (2002).

  56. 56.

    McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).

  57. 57.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

  58. 58.

    Crisp, M. D. & Cook, L. G. A congruent molecular signature of vicariance across multiple plant lineages. Mol. Phylogenet. Evol. 43, 1106–1117 (2007).

  59. 59.

    Hickerson, M. J., Stahl, E. A. & Lessios, H. A. Test for simultaneous divergence using approximate Bayesian computation. Evolution 60, 2435–2453 (2006).

  60. 60.

    Near, T. J. et al. Boom and bust: ancient and recent diversification in bichirs (Polypteridae: Actinopterygii), a relictual lineage of ray-finned fishes. Evolution 68, 1014–1026 (2014).

  61. 61.

    Magallón, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).

  62. 62.

    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).

Download references


P.M.O. was supported by a McKenzie Postdoctoral Fellowship from the University of Melbourne and an Australian Reseach Council Early Career Researcher Fellowship. We thank L. Bromham, M. Cardillo, M. Novosolov and C. Moritz for comments.

Author information

P.M.O. and A.F.H. conceived the project, undertook the analyses and wrote the paper.

Correspondence to Paul M. Oliver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Notes 1-3, Supplementary Tables 1-6, Supplementary Figures 1-3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading