Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The meaning of intragenomic conflict

Abstract

Recent years have seen an explosion of interest in genes that function for their own good and to the detriment of other genes that reside in the same genome. Such intragenomic conflicts are increasingly recognized to underpin maladaptation and disease. However, progress has been impeded by a lack of clear understanding regarding what intragenomic conflict actually means, and an associated obscurity concerning its fundamental drivers. Here we develop a general theory of intragenomic conflict in which genes are viewed as inclusive-fitness-maximizing agents that come into conflict when their inclusive-fitness interests disagree. This yields a classification of all intragenomic conflicts into three categories according to whether genes disagree about where they have come from, where they are going, or where they currently are. We illustrate each of these three basic categories, survey and classify all known forms of intragenomic conflict, and discuss the implications for organismal maladaptation and human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General classification of intragenomic conflicts.

Similar content being viewed by others

References

  1. Darwin, C. R. The Origin of Species (John Murray, London, 1859).

  2. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, London, 1930).

  3. Hamilton, W. D. The genetical evolution of social behaviour. J. Theor. Biol. 7, 1–52 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Price, G. R. Selection and covariance. Nature 227, 520–521 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Grafen, A. Optimisation of inclusive fitness. J. Theor. Biol. 238, 541–563 (2006).

    Article  PubMed  Google Scholar 

  6. Gardner, A. Adaptation as organism design. Biol. Lett. 6, 861–864 (2009).

    Article  Google Scholar 

  7. West, S. A. & Gardner, A. Adaptation and inclusive fitness. Curr. Biol. 23, R577–R584 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Grafen, A. Formal Darwinism, the individual-as-maximising-agent analogy, and bet-hedging. Proc. R. Soc. Lond. B 266, 799–803 (1999).

    Article  Google Scholar 

  9. Davies, N. B., Krebs, J. R. & West, S. A. An Introduction to Behavioural Ecology (Wiley-Blackwell, Oxford, 2012).

  10. Haig, D. Genomic Imprinting and Kinship (Rutgers, Cambridge, 2002).

  11. Úbeda, F. & Haig, D. Sex-specific meiotic drive and selection at an imprinted locus. Genetics 167, 2083–2095 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Úbeda, F. & Normark, B. B. Male killers and the origins of paternal genome elimination. Theor. Pop. Biol. 70, 511–526 (2006).

    Article  Google Scholar 

  13. Burt, A. & Trivers, R. Genes in Conflict: The Biology of Selfish Genetic Elements (Harvard Univ. Press, Cambridge, 2006).

  14. Foster, K. R. The sociobiology of molecular systems. Nat. Rev. Genet. 12, 193–203 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Úbeda, F. & Wilkins, J. F. Imprinted genes and human disease, an evolutionary perspective. Adv. Exp. Med. Biol. 626, 101–115 (2008).

    Article  PubMed  Google Scholar 

  16. Summers, K., da Silva, J. & Farwell, M. A. Intragenomic conflict and cancer. Med. Hypotheses 59, 170–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Constancia, M., Kelsey, G. & Reik, W. Resourceful imprinting. Nature 432, 53–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Úbeda, F. & Gardner, A. A model for genomic imprinting in the social brain: juveniles. Evolution 64, 2587–2600 (2010).

    Article  PubMed  Google Scholar 

  19. Úbeda, F. & Gardner, A. A model for genomic imprinting in the social brain: adults. Evolution 65, 462–475 (2011).

    Article  PubMed  Google Scholar 

  20. Úbeda, F. & Gardner, A. A model for genomic imprinting in the social brain: elders. Evolution 66, 1567–1581 (2012).

    Article  PubMed  Google Scholar 

  21. Crespi, B., Foster, K. & Úbeda, F. First principles of Hamiltonian medicine. Phil. Trans. R. Soc. B 369, 20130366 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haig, D. Maternal–fetal conflict, genomic imprinting and mammalian vulnerabilities to cancer. Phil. Trans. R. Soc. B 370, 20140178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hague, W. M., Adams, J., Reeders, S. T., Peto, T. E. & Jacobs, H. S. Familial polycystic ovaries: a genetic disease? Clin. Endocrinol. 29, 593–605 (1988).

    Article  CAS  Google Scholar 

  24. Haig, D. & Wharton, R. Prader–Willi syndrome and the evolution of human childhood. Am. J. Hum. Biol. 15, 320–329 (2003).

    Article  PubMed  Google Scholar 

  25. Úbeda, F. Evolution of genomic imprinting with biparental care: implications for Prader–Willi and Angelman syndromes. PLoS Biol. 6, e208 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Crespi, B. & Badcock, C. Psychosis and autism as diametrical disorders of the social brain. Behav. Brain. Sci. 31, 241–320 (2008).

    PubMed  Google Scholar 

  27. Belancio, V. P., Deininger, P. L. & Roy-Engel, A. M. LINE dancing in the human genome: transposable elements and disease. Genome Med. 1, 97 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chou, J. Y. & Leu, J. Y. The red queen in mitochondria: cyto-nuclear co-evolution, hybrid breakdown and human disease. Front. Genet. 6, 187 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gavrilets, S. Is sexual conflict an “engine of speciation”? Cold Spring Harb. Perspect. Biol. 6, a017723 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gardner, A. & Welch, J. J. A formal theory of the selfish gene. J. Evol. Biol. 24, 1801–1813 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Rousset, F. Genetic Structure and Selection in Subdivided Populations (Princeton Univ. Press, Princeton, 2004).

  32. Hamilton, W. D. Altruism and related phenomena, mainly in social insects. Annu. Rev. Ecol. Syst. 3, 193–232 (1972).

    Article  Google Scholar 

  33. Hurst, L. D., Atlan, A. & Bengtsson, B. O. Genetic conflicts. Q. Rev. Biol. 71, 317–364 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Charlesworth, B. Conflicts of interest. Curr. Biol. 16, R1009–R1011 (2006).

    Article  Google Scholar 

  35. Haig, D. Parental antagonism, relatedness asymmetries, and genomic imprinting. Proc. R. Soc. Lond. B 264, 1657–1662 (1997).

    Article  CAS  Google Scholar 

  36. Úbeda, F. & Haig, D. Dividing the child. Genetica 117, 103–110 (2003).

    Article  PubMed  Google Scholar 

  37. Moore, T. & Haig, D. Genomic imprinting in mammalian development: a parental tug-of-war. Trends Genet. 7, 45–49 (1991).

    Article  CAS  PubMed  Google Scholar 

  38. Crow, J. F. The ultraselfish gene. Genetics 118, 389–391 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lindholm, A. K. et al. The ecology and evolutionary dynamics of meiotic drive. Trends Ecol. Evol. 31, 315–326 (2016).

    Article  PubMed  Google Scholar 

  40. Larracuente, A. M. & Presgraves, D. C. The selfish segregation distorter gene complex of Drosophila melanogaster. Genetics 192, 33–53 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Leigh, E. G. Jr. How does selection reconcile individual advantage with the good of the group? Proc. Natl Acad. Sci. USA 74, 4542–4546 (1977).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dawkins, R. The Selfish Gene (Oxford Univ. Press, Oxford, 1976).

  43. Gardner, A. & West, S. A. Greenbeards. Evolution 64, 25–38 (2010).

    Article  PubMed  Google Scholar 

  44. Ridley, M. & Grafen, A. Are green beard genes outlaws? Anim. Behav. 29, 954–955 (1981).

    Article  Google Scholar 

  45. Dawkins, R. The Extended Phenotype (Oxford Univ. PRess, Oxford, 1982).

  46. Biernaskie, J. M., West, S. A. & Gardner, A. Are greenbeards intragenomic outlaws? Evolution 65, 2729–2742 (2011).

    Article  PubMed  Google Scholar 

  47. Alexander, R. D. & Borgia, G. Group selection, altruism, and levels of organization of life. Annu. Rev. Ecol. Evol. Syst. 9, 449–474 (1978).

    Article  Google Scholar 

  48. Seger, J. Evolution of responses to relative homozygosity. Nature 262, 579–580 (1976).

    Article  Google Scholar 

  49. Dall, S. R. X., McNamara, J. M. & Leimar, O. Genes as cues: phenotypic integration of genetic and epigenetic information from a Darwinian perspective. Trends Ecol. Evol. 30, 327–333 (2015).

    Article  PubMed  Google Scholar 

  50. Leimar, O., Dall, S. R. X., Hammerstein, P. & McNamara, J. M. Genes as cues of relatedness and social evolution in heterogeneous environments. PLoS Comput. Biol. 12, e1005006 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cosmides, L. M. & Tooby, J. Cytoplasmic inheritance and intragenomic conflict. J. Theor. Biol. 89, 83–129 (1981).

    Article  Google Scholar 

  52. Werren, J. H. Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl Acad. Sci. USA 108, 10863–10870 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rice, W. R. Nothing in genetics makes sense except in the light of genomic conflict. Annu. Rev. Ecol. Evol. Syst. 44, 217–237 (2013).

    Article  Google Scholar 

  54. Okasha, S. Evolution and the Levels of Selection (Oxford Univ. Press, Oxford, 2006).

  55. Pomiankowski, A. in Levels of Selection in Evolution (ed. Keller, L.) 121–152 (Princeton Univ. Press, Princeton, 1999).

  56. Spencer, H. G. in The Encyclopedia of Life Sciences (Wiley, 2003).

  57. Brandvain, Y. Matrisibs, patrisibs, and the evolution of imprinting on autosomes and sex chromosomes. Am. Nat. 176, 511–521 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gardner, A. Genomic imprinting and the units of adaptation. Heredity 113, 104–111 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Williams, G. C. Adaptation and Natural Selection (Princeton Univ. Press, Princeton, 1966).

  60. Williams, G. C. Natural Selection: Domains, Levels, and Challenges (Oxford  Univ. Press, Oxford, 1992).

  61. Stencel, A. & Crespi, B. What is a genome? Molec. Ecol. 22, 3437–3443 (2013).

    Article  CAS  Google Scholar 

  62. Trivers, R. L. in Sexual Selection and the Descent of Man 1871–1971 (ed. Campbell, B.) 136–179 (Aldine, 1972).

  63. Trivers, R. L. Parent–offspring conflict. Am. Zool. 14, 249–264 (1974).

    Article  Google Scholar 

  64. Mock, D. W. & Parker, G. A. The Evolution of Sibling Rivalry (Oxford Univ. Press, Oxford, 1997).

  65. Rice, W. R. & Holland, B. The enemies within: intergenomic conflict, interlocus contest evolution (ICE), and the intraspecific Red Queen. Behav. Ecol. Sociobiol. 41, 1–10 (1997).

    Article  Google Scholar 

  66. Chapman, T., Arnqvist, G., Bangham, J. & Rowe, L. Sexual conflict. Trends Ecol. Evol. 18, 41–47 (2003).

    Article  Google Scholar 

  67. Haig, D., Úbeda, F. & Patten, M. M. Specialists and generalists: the sexual ecology of the genome. Cold Spring Harb. Perspect. Biol. 6, 017525 (2014).

    Article  Google Scholar 

  68. Godfray, H. C. J. Evolutionary theory of parent–offspring conflict. Nature 376, 133–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Gardner, A. & Ross, L. Mating ecology explains patterns of genome elimination. Ecol. Lett. 17, 1602–1612 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Haig, D. Placental hormones, genomic imprinting, and maternal–fetal communication. J. Evol. Biol. 9, 357–380 (1996).

    Article  CAS  Google Scholar 

  71. Farrell, E. J., Úbeda, F. & Gardner, A. Intragenomic conflict over dispersal. Am. Nat. 186, E61–E71 (2015).

    Article  PubMed  Google Scholar 

  72. Wilkins, J. F. Genomic imprinting and conflict-induced decanalization. Evolution 65, 537–553 (2011).

    Article  PubMed  Google Scholar 

  73. Bulmer, M. G. Theoretical Evolutionary Ecology (Sinauer, Sunderland, 1994).

  74. Gardner, A. The genetical theory of multilevel selection. J. Evol. Biol. 28, 305–319 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Úbeda, F. & Gardner, A. Mother and offspring in conflict: why not? PLoS Biol. 13, e1002084 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Frank and M. Morrissey for helpful comments and discussion, and F. Úbeda Izargain for an original source of intragenomic conflict. A.G. is supported by an Independent Research Fellowship from the Natural Environment Research Council (NE/K009524/1).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and F.Ú. conceived the study, performed the analyses and wrote the paper.

Corresponding authors

Correspondence to Andy Gardner or Francisco Úbeda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gardner, A., Úbeda, F. The meaning of intragenomic conflict. Nat Ecol Evol 1, 1807–1815 (2017). https://doi.org/10.1038/s41559-017-0354-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0354-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing