Soil biota contributions to soil aggregation


Humankind depends on the sustainability of soils for its survival and well-being. Threatened by a rapidly changing world, our soils suffer from degradation and biodiversity loss, making it increasingly important to understand the role of soil biodiversity in soil aggregation—a key parameter for soil sustainability. Here, we provide evidence of the contribution of soil biota to soil aggregation on macro- and microaggregate scales, and evaluate how specific traits, soil biota groups and species interactions contribute to this. We conducted a global meta-analysis comprising 279 soil biota species. Our study shows a clear positive effect of soil biota on soil aggregation, with bacteria and fungi generally appearing to be more important for soil aggregation than soil animals. Bacteria contribute strongly to both macro- and microaggregates while fungi strongly affect macroaggregation. Motility, body size and population density were important traits modulating effect sizes. Investigating species interactions across major taxonomic groups revealed their beneficial impact on soil aggregation. At the broadest level, our results highlight the need to consider biodiversity as a causal factor in soil aggregation. This will require a shift from the current management and physicochemical perspective to an approach that fully embraces the significance of soil organisms, their diversity and interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Data structure and study locations.
Fig. 2: Effect size range in the single taxa dataset and effect of the HTC, phylum and aggregate size fraction on the effect size rrST.
Fig. 3: Impact of functional traits on the effect size rrST in the single taxa dataset.
Fig. 4: Impact of soil biota interactions in mixtures across and within taxonomic groups (HTC and phylum level, respectively) on soil aggregation.


  1. 1.

    Healthy Soils Are the Basis for Healthy Food Production (FAO, Rome, 2015).

  2. 2.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Penguin, New York, 2011).

  5. 5.

    Dindal, D. L. Soil Biology Guide (Wiley-Interscience, Hoboken, 1990).

  6. 6.

    Bronick, C. J. & Lal, R. Soil structure and management: a review.Geoderma 124, 3–22 (2005).

    CAS  Article  Google Scholar 

  7. 7.

    Rillig, M. C. & Mummey, D. L. Mycorrhizas and soil structure. New Phytol. 171, 41–53 (2006).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tisdall, J. M. & Oades, J. M. Organic-matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).

    CAS  Article  Google Scholar 

  9. 9.

    Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Delgado-Baquerizo, M. et al. Circular linkages between soil biodiversity, fertility and plant productivity are limited to topsoil at the continental scale. New Phytol. 215, 1186–1196 (2017).

    Article  PubMed  Google Scholar 

  11. 11.

    Lehmann, A., Leifheit, E. F. & Rillig, M. C. in Mycorrhizal Mediation of Soil—Fertility, Structure, and Carbon Storage (eds Johnson, N. Gehring, C. & Jansa, J.) Ch. 14 (Elsevier, Amsterdam, 2016).

  12. 12.

    Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79, 7–31 (2004).

    Article  Google Scholar 

  13. 13.

    Chenu, C. Influence of a fungal polysaccharide, scleroglucan, on clay microstructure. Soil Biol. Biochem. 21, 299–305 (1989).

    CAS  Article  Google Scholar 

  14. 14.

    Deng, J. Z. et al. Synergistic effects of soil microstructure and bacterial EPS on drying rate in emulated soil micromodels. Soil Biol. Biochem. 83, 116–124 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Degens, B. P. Macro-aggregation of soils by biological bonding and binding mechanisms and the factors affecting these: a review. Aust. J. Soil Res. 35, 431–459 (1997).

    Article  Google Scholar 

  16. 16.

    Blanchart, E. et al. SWORM: an agent-based model to simulate the effect of earthworms on soil structure. Eur. J. Soil Sci. 60, 13–21 (2009).

    Article  Google Scholar 

  17. 17.

    Leifheit, E. F., Verbruggen, E. & Rillig, M. C. Arbuscular mycorrhizal fungi reduce decomposition of woody plant litter while increasing soil aggregation. Soil Biol. Biochem. 81, 323–328 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Siddiky, M. R. K., Schaller, J., Caruso, T. & Rillig, M. C. Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol. Biochem. 47, 93–99 (2012).

    CAS  Article  Google Scholar 

  19. 19.

    Leifheit, E. F., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant Soil 374, 523–537 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Miller, R. M. & Jastrow, J. D. in Mycorrhizae in Sustainable Agriculture (eds Bethlenfalvayand, C. J. & Linderman, R. G.) 29–44 (Soil Science Society of America, Madison, 1992).

  21. 21.

    Tisdall, J. M., Smith, S. E. & Rengasamy, P. Aggregation of soil by fungal hyphae. Aust. J. Soil Res. 35, 55–60 (1997).

    Article  Google Scholar 

  22. 22.

    Marshall, K. C. Interfaces in Microbial Ecology (Harvard Univ. Press, Cambridge, 1976).

  23. 23.

    Hattori, T. Microbial Life in Soil (Marcel Dekker, New York, 1973).

  24. 24.

    Belnap, J. & Gardner, J. S. Soil microstructure in soils of the Colorado Plateau—the role of the cyanobacterium Microcoleus vaginatus. Great Basin Nat. 53, 40–47 (1993).

    Google Scholar 

  25. 25.

    Smith, S. M., Abed, R. M. M. & Garcia-Pichel, F. Biological soil crusts of sand dunes in Cape Cod National Seashore, Massachusetts, USA. Microb. Ecol. 48, 200–208 (2004).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Santaella, C., Schue, M., Berge, O., Heulin, T. & Achouak, W. The exopolysaccharide of Rhizobium sp. YAS34 is not necessary for biofilm formation on Arabidopsis thaliana and Brassica napus roots but contributes to root colonization. Environ. Microbiol. 10, 2150–2163 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Brown, L., Wolf, J. M., Prados-Rosales, R. & Casadevall, A. Through the wall: extracellular vesicles in gram-positive bacteria, mycobacteria and fungi. Nat. Rev. Microbiol. 13, 620–630 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Eisenhauer, N. The action of an animal ecosystem engineer: identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia 53, 343–352 (2010).

    Article  Google Scholar 

  29. 29.

    Lee, K. E. Earthworms: Their Ecology and Relationships with Soils and Land Use (Academic, Cambridge, 1985).

  30. 30.

    Pijper, A. in Ergebnisse der Mikrobiologie, Immunitätsforschung und Experimentellen Therapie (eds Kikuth, W. et al.) 37–95 (Springer, Heidelberg, 1957).

  31. 31.

    Quillin, K. J. Ontogenetic scaling of hydrostatic skeletons: geometric, static stress and dynamic stress scaling of the earthworm Lumbricus terrestris. J. Exp. Biol. 201, 1871–1883 (1998).

    PubMed  Google Scholar 

  32. 32.

    Tan, Y., Gannon, J. T., Baveye, P. & Alexander, M. Transport of bacteria in an aquifer sand—experiments and model simulations. Water Resour. Res. 30, 3243–3252 (1994).

    Article  Google Scholar 

  33. 33.

    Lehmann, A. & Rillig, M. C. Understanding mechanisms of soil biota involvement in soil aggregation: a way forward with saprobic fungi? Soil Biol. Biochem. 88, 298–302 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    De Graaff, M. A., Adkins, J., Kardol, P. & Throop, H. L. A meta-analysis of soil biodiversity impacts on the carbon cycle. Soil 1, 257–271 (2015).

    Article  Google Scholar 

  35. 35.

    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. & Group, T. P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151, 264–269 (2009).

    Article  PubMed  Google Scholar 

  36. 36.

    Bender, S. F., Wagg, C. & van der Heijden, M. G. A. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).

    Article  PubMed  Google Scholar 

  37. 37.

    Copas, J. & Shi, J. Q. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 1, 247–262 (2000).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Bardgett, R. D. The Biology of Soil: A Community and Ecosystem Approach 1st edn (Oxford Univ. Press, Oxford, 2005).

  39. 39.

    Veresoglou, S. D., Halley, J. M. & Rillig, M. C. Extinction risk of soil biota. Nat. Commun. 6, 8862 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kemper, W. D. & Rosenau, R. C. Aggregate Stability and Size Distribution (American Society of Agronomy, Madison, 1986).

  41. 41.

    Anderson, J. T. Plant fitness in a rapidly changing world. New Phytol. 210, 81–87 (2016).

    Article  PubMed  Google Scholar 

  42. 42.

    R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).

  43. 43.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

  44. 44.

    Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  45. 45.

    Lajeunesse, M. J. Facilitating systematic reviews, data extraction, and meta-analysis with the metagear package for R. Methods Ecol. Evol 7, 323–330 (2016).

    Article  Google Scholar 

  46. 46.

    Canty, A. & Ripley, B. Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-18 (R Foundation for Statistical Computing, Vienna, 2015).

  47. 47.

    Knapp, G. & Hartung, J. Improved tests for a random effects meta-regression with a single covariate. Stat. Med. 22, 2693–2710 (2003).

    Article  PubMed  Google Scholar 

  48. 48.

    Borenstein, M. & Higgins, J. P. T. Meta-analysis and subgroups. Prev. Sci. 14, 134–143 (2013).

    Article  PubMed  Google Scholar 

  49. 49.

    Sterne, J. A. C. & Egger, M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J. Clin. Epidemiol. 54, 1046–1055 (2001).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: Draw Geographical Maps. Version (3.2.0) (2016);

Download references


We thank J. Antonovics for input on this paper. A.L. and M.C.R. acknowledge funding from Deutsche Forschungsgemeinschaft (grant number RI 1815/16-1). M.C.R. additionally acknowledges funding from a European Research Council Advanced Grant (694368) and the Federal Ministry for Education and Research-funded project INPLAMINT.

Author information




A.L. designed and performed the research; W.Z. contributed analytical tools; A.L. and M.C.R. wrote the manuscript; all authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Anika Lehmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–4, Supplementary Figures 1–21, Supplementary References

Life sciences reporting summary.

Life sciences reporting summary.

Supplementary Data

Single Taxa dataset, Interacting Taxa dataset.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lehmann, A., Zheng, W. & Rillig, M.C. Soil biota contributions to soil aggregation. Nat Ecol Evol 1, 1828–1835 (2017).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing