Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The importance of cancer cells for animal evolutionary ecology

Reciprocal interactions between hosts, their symbionts and their oncobiota (cancer cell communities) are yet to be studied in detail. Considering malignant cells in addition to the holobiont perspective allows greater understanding of the processes governing both host phenotypes and cancer dynamics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Thomas, F., Guégan, J.-F. & Renaud, F. (eds) Ecology and Evolution of Parasitism (Oxford Univ. Press, New York, 2009).

  2. 2.

    Hughes, D. P., Brodeur, J. & Thomas, F. Host Manipulation by Parasites (Oxford Univ. Press, Oxford, 2012).

    Google Scholar 

  3. 3.

    Blanchet, S., Thomas, F. & Loot, G. Trends Parasitol. 25, 364–369 (2009).

    Article  Google Scholar 

  4. 4.

    Perrot-Minnot, M.-J. & Cézilly, F. in Ecology and Evolution of Parasitism (eds Thomas, F. et al.) 49–68 (Oxford Univ. Press, New York, 2009).

  5. 5.

    David, L. A. et al. Genome Biol. 15, R89 (2014).

    Article  Google Scholar 

  6. 6.

    Moeller, A. H. A. et al. Sci. Adv. 2, e1500997 (2016).

    Article  Google Scholar 

  7. 7.

    Tung, J. et al. Elife 4, e05224 (2015).

    Article  Google Scholar 

  8. 8.

    Benton, D., Williams, C. & Brown, A. Eur. J. Clin. Nutr. 61, 355–361 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    Desbonnet, L. et al. Brain Behav. Immun. 48, 165–173 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Dinan, T. G. & Cryan, J. F. Curr. Opin. Clin. Nutr. Metab. Care 18, 552–558 (2015).

    Article  Google Scholar 

  11. 11.

    Leitão-Gonçalves, R. et al. PLoS Biol. 15, e2000862 (2017).

    Article  Google Scholar 

  12. 12.

    Alcock, J., Maley, C. C. & Aktipis, C. A. BioEssays 36, 940–949 (2014).

    Article  Google Scholar 

  13. 13.

    Aktipis, C. A. & Nesse, R. M. Evol. Appl. 6, 144–159 (2013).

    Article  Google Scholar 

  14. 14.

    Bissell, M. J. & Hines, W. C. Nat. Med. 17, 320–329 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Folkman, J. & Kalluri, R. Nature 427, 787–787 (2004).

    CAS  Article  Google Scholar 

  16. 16.

    Madsen, T. et al. in Ecology and Evolution of Cancer (eds Ujvari, B. et al.) 11–46 (Elsevier, London, 2017).

  17. 17.

    Ujvari, B., Gatenby, R. & Thomas, F. in Ecology and Evolution of Cancer (eds Ujvari, B. et al.) 167–179 (Elsevier, London, 2017).

  18. 18.

    Vittecoq, M. et al. Trends Ecol. Evol. 28, 628–635 (2013).

    Article  Google Scholar 

  19. 19.

    Thomas, F. et al. J. Evol. Appl. 10, 651–657 (2017).

    Article  Google Scholar 

  20. 20.

    Tissot, T. et al. BioEssays 38, 276–285 (2016).

    Article  Google Scholar 

  21. 21.

    Vittecoq, M. et al. Anim. Behav. 101, 19–26 (2015).

    Article  Google Scholar 

  22. 22.

    Jacqueline, C. et al. BMC Cancer 17, 257 (2017).

    Article  Google Scholar 

  23. 23.

    Ujvari, B. et al. Parasitology 143, 533–541 (2016).

    Article  Google Scholar 

  24. 24.

    Arnal, A. et al. Ecol. Evol. 7, 272–276 (2017).

    Article  Google Scholar 

  25. 25.

    Jones, M. E. et al. Proc. Natl Acad. Sci. USA 105, 10023–10027 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    de Martel, C. & Franceschi, S. Crit. Rev. Oncol. Hematol. 70, 183–194 (2009).

    Article  Google Scholar 

  27. 27.

    Kiessling, R. et al. Cancer Immunol. Immunother. 48, 353–362 (1999).

    CAS  Article  Google Scholar 

  28. 28.

    Gabrilovich, D. I. & Hurwitz, A. A. (eds) Tumor-Induced Immune Suppression (Springer, New York, 2008).

  29. 29.

    Smiley, S., Almyroudis, N. & Segal, B. H. Abstr. Hematol. Oncol. 8, 20–30 (2005).

    Google Scholar 

  30. 30.

    Segal, B. & Freifeld, A. J. Natl Compr. Canc. Netw. 10, 1412–1445 (2008).

    Google Scholar 

  31. 31.

    Poulin, R. & Morand, S. Q. Rev. Biol. 75, 277–293 (2000).

    CAS  Article  Google Scholar 

  32. 32.

    Schwabe, R. F. & Jobin, C. Nat. Rev. Cancer 13, 800–812 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Zitvogel, L. et al. Sci. Transl. Med. 7, 271ps1 (2015).

    Article  Google Scholar 

  34. 34.

    Francescone, R., Hou, V. & Grivennikov, S. I. Cancer J. 20, 181–189 (2014).

    CAS  Article  Google Scholar 

  35. 35.

    Grivennikov, S. I. et al. Nature 491, 254–258 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Bhattacharya, N. et al. Immunity 45, 641–655 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Zitvogel, L., Ayyoub, M., Routy, B. & Kroemer, G. Cell 165, 276–287 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Zhang, H. & Luo, X. M. Gut Microbes 6, 156–160 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Belkaid, Y. & Hand, T. W. Cell 157, 121–141 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Maynard, C. L., Elson, C. O., Hatton, R. D. & Weaver, C. T. Nature 489, 231–41 (2012).

    CAS  Article  Google Scholar 

  41. 41.

    Mager, D. J. Transl. Med. 4, 14 (2006).

    CAS  Article  Google Scholar 

  42. 42.

    Cummins, J. & Tangney, M. Infect. Agent. Cancer 8, 11 (2013).

    Article  Google Scholar 

  43. 43.

    Roche, B., Møller, A. P., DeGregori, J. & Thomas, F. in Ecology and Evolution of Cancer (eds Ujvari, B. et al.) 181–191 (Elsevier, London, 2017).

  44. 44.

    Poulin, R. & Thomas, F. Parasitol. Today 15, 28–32 (1999).

    CAS  Article  Google Scholar 

  45. 45.

    Ewald, P. W. J. Theor. Biol. 86, 169–176 (1980).

    CAS  Article  Google Scholar 

  46. 46.

    Cryan, J. F. & Dinan, T. G. Nat. Rev. Neurosci. 13, 701–712 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Buffie, C. G. et al. Infect. Immun. 80, 62–73 (2012).

    CAS  Article  Google Scholar 

  48. 48.

    Tourret, J. et al. Transplantation 101, 74–82 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Thomas, F. & Guégan, J. F. Oxford Biol. 103, 1355–1363 (2009).

    Google Scholar 

  50. 50.

    Walrath, J. C., Hawes, J. J., Van Dyke, T. & Reilly, K. M. Adv. Cancer Res. 106, 113–164 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Poulin for relevant comments on an earlier version of this paper. This work was supported by the ANR (Blanc project EVOCAN) by the CNRS (INEE), by the Montpellier Hérault Sport Club, by an International Associated Laboratory Project France/Australia and A. Hoffmann (MAVA Fondation). This article is dedicated to the memory of our friend and colleague, Janice Britton-Davidian.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frédéric Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, F., Jacqueline, C., Tissot, T. et al. The importance of cancer cells for animal evolutionary ecology. Nat Ecol Evol 1, 1592–1595 (2017). https://doi.org/10.1038/s41559-017-0343-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing