Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Ecological resilience in lakes and the conjunction fallacy

Abstract

There is a pressing need to apply stability and resilience theory to environmental management to restore degraded ecosystems effectively and to mitigate the effects of impending environmental change. Lakes represent excellent model case studies in this respect and have been used widely to demonstrate theories of ecological stability and resilience that are needed to underpin preventative management approaches. However, we argue that this approach is not yet fully developed because the pursuit of empirical evidence to underpin such theoretically grounded management continues in the absence of an objective probability framework. This has blurred the lines between intuitive logic (based on the elementary principles of probability) and extensional logic (based on assumption and belief) in this field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Standard deviation (s.d.) as an EWI for three lake ecosystems, over different timescales.

Loch Leven photograph (left image), Jim Hampson/Scottish Natural Heritage; Windermere photograph (middle image), Mitzi M. De Ville; Müggelsee photograph (right image), T. Hintze.

Fig. 2: An assessment of EWIs during a transition from macrophyte to phytoplankton dominance in a nine-month mesocosm experiment38,24 September 2012 to 2 August 2013, Wuhan Botanical Gardens, China.
Fig. 3: Examples of changes in variability following management intervention.

Calhoun Lake photograph (right image), Minneapolis Park and Recreation Board.

Fig. 4

Similar content being viewed by others

References

  1. Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).

    Article  Google Scholar 

  2. Tversky, A. D. & Kahneman, D. Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychol. Rev. 90, 293–315 (1983).

    Article  Google Scholar 

  3. Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Litzow, M. & Hunsicker, M. E. Early warning signals, nonlinearity, and signs of hysteresis in real ecosystems. Ecosphere 7, e01614 (2016).

    Article  Google Scholar 

  5. Pace, M. et al. Reversal of a cyanobacterial bloom in response to early warnings. Proc. Natl Acad. Sci. USA 114, 352–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, R. et al. Flickering gives early warning signals of a critical transition to a eutrophic lake. Nature 492, 419–422 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Grimm, V., Schmidt, E. & Wissel, C. On the application of stability concepts in ecology. Ecol. Model. 63, 143–161 (1992).

    Article  Google Scholar 

  8. Anderson, T., Carstensen, J., Garcia, E. H. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).

    Article  Google Scholar 

  9. Lees, K., Pitois, S., Scott, C., Frid, C. & Mackinson, S. Characterizing regime shifts in the marine environment. Fish Fish. 7, 104–127 (2006).

    Article  Google Scholar 

  10. Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20–28 (2010).

    Article  Google Scholar 

  11. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2015).

    Article  PubMed Central  Google Scholar 

  13. Drake, J. M. & Griffen, B. D. Early warning signals of extinction in deteriorating environments. Nature 467, 456–459 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Carpenter, S. R., Brock, W. A., Cole, J. J. & Pace, M. J. A new approach for rapid detection of nearby thresholds in ecosystem time series. Oikos 123, 290–297 (2014).

    Article  Google Scholar 

  15. Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–360 (2012).

    Article  CAS  Google Scholar 

  16. Dai, L., Vorselen, D., Korolev, K. S. & Gore, G. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science 336, 1175–1177 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long‐term ecological data? J. Appl. Ecol. 53, 666–676 (2015).

    Article  Google Scholar 

  18. Capon, S. J. et al. Regime shifts, thresholds and multiple stable states in freshwater ecosystems; a critical appraisal of the evidence. Sci. Total Environ. 534, 122–130 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gunderson, L. H. Ecological resilience—in theory and application. Annu. Rev. Ecol. Syst. 31, 425–439 (2000).

    Article  Google Scholar 

  21. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Boerlijst, M. C., Oudman, T. & de Roos, A. M. Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models. PLoS ONE 8, e62033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sommer, S., van Benthem, K. J., Fontaneto, D. & Ozgul, A. Are generic early-warning signals reliable indicators of population collapse in rotifers? Hydrobiologia 796, 111–120 (2017).

    Article  Google Scholar 

  24. Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).

    Article  Google Scholar 

  25. Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Gsell, A. S. et al. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proc. Natl Acad. Sci. USA 113, E8089–E8095 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Søndergaard, M., Larsen, S. E., Johansson, L. S., Lauridsen, T. L. & Jeppesen, E. Ecological classification of lakes: uncertainty and the influence of year-to-year variability. Ecol. Indic. 61, 248–257 (2016).

    Article  Google Scholar 

  28. Connell, J. H. & Sousa, W. P. On the evidence needed to judge ecological stability or persistence. Am. Nat. 121, 789–824 (1983).

    Article  Google Scholar 

  29. Sayer, C. D. et al. Long-term dynamics of submerged macrophytes and algae in a small and shallow, eutrophic lake: implications for the stability of macrophyte-dominance. Freshw. Biol. 55, 565–583 (2010).

    Article  CAS  Google Scholar 

  30. Phillips, G., Willby, N. & Moss, B. Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat. Bot. 135, 37–45 (2016).

    Article  Google Scholar 

  31. Jeppesen, E., Søndergaard, M., Meerhoff, M., Lauridsen, T. L. & Jensen, J. P. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584, 239–252 (2007).

    Article  CAS  Google Scholar 

  32. Gutierrez, M. F. et al. Is recovery of large-bodied zooplankton after nutrient loading reduction hampered by climate warming? A long-term study of shallow hypertrophic Lake Søbygaard, Denmark. Water 8, 341 (2016).

    Article  CAS  Google Scholar 

  33. Batt, R. D., Carpenter, S. R., Cole, J. J., Pace, M. L. & Johnson, R. A. Changes in ecosystem resilience detected in automated measures of ecosystem metabolism during a whole-lake manipulation. Proc. Natl Acad. Sci. USA 110, 17398–17403 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brock, W. A. & Carpenter, S. R. Interacting regime shifts in ecosystems: implications for early warnings. Ecol. Monogr. 80, 353–367 (2010).

    Article  Google Scholar 

  35. Francis, T. B. et al. Shifting regimes and changing interactions in the Lake Washington, U.S.A., plankton community from 1962–1994. PLoS ONE 9, e110363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuiper, J. J. et al. Food-web stability signals critical transition in temperate shallow lakes. Nat. Commun. 6, 7727 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Stewart, R. I. A. et al. Mesocosm experiments in ecological climate change research. Adv. Ecol. Res. 48, 69–179 (2013).

    Google Scholar 

  38. Olsen, S. et al. Strong impact of nitrogen loading on submerged macrophytes and algae: a long-term mesocosm experiment in a shallow Chinese lake. Freshwater Biol. 60, 1525–1536 (2015).

    Article  CAS  Google Scholar 

  39. Pace, M. L., Carpenter, S. R., Johnson, R. A. & Kurtzweil, J. T. Zooplankton provide early warnings of a regime shift in a whole lake manipulation. Limnol. Oceanogr. 58, 525–532 (2013).

    Article  Google Scholar 

  40. Jeppesen, E. et al. Lake responses to reduced nutrient loading — an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).

    Article  CAS  Google Scholar 

  41. Lürling, M., Mackay, E. B., Reitzel, K. & Spears, B. M. Editorial — a critical perspective on geo-engineering for eutrophication management in lakes. Water Res. 97, 1–10 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Jeppesen, E. et al. Biomanipulation as a restoration tool to combat eutrophication: recent advances and future challenges. Adv. Ecol. Res. 47, 411–487 (2012).

    Article  Google Scholar 

  43. Søndergaard, M. et al. Lake restoration in Denmark and The Netherlands: successes, failures and long-term effects. J. Appl. Ecol. 44, 1095–1105 (2007).

    Article  CAS  Google Scholar 

  44. Huser, B., Brezonik, P. & Newman, R. Effects of alum treatment on water quality and sediment in the Minneapolis Chain of Lakes, Minnesota, USA. Lake Reserv. Manage. 27, 220–228 (2011).

    Article  CAS  Google Scholar 

  45. Huser, B. J., Futter, M., Lee, J. T. & Perniel, M. In-lake measures for phosphorus control: the most feasible and cost-effective solution for long-term management of water quality in urban lakes. Water Res. 97, 142–152 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Tanentzap, A. J. et al. Cooling lakes while the world warms: effects of forest regrowth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnol. Oceanogr. 53, 404–410 (2008).

    Article  CAS  Google Scholar 

  47. Fölster, J., Johnson, R. K., Futter, M. N. & Wilander, A. The Swedish monitoring of surface waters: 50 years of adaptive monitoring. Ambio 43, 3–18 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long‐term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).

    Article  Google Scholar 

  49. Sand‐Jensen, K., Bruun, H. H. & Baastrup‐Spohr, L. Decade‐long time delays in nutrient and plant species dynamics during eutrophication and re‐oligotrophication of Lake Fure 1900‐2015. J. Ecol. 105, 690–700 (2016).

    Google Scholar 

  50. Reid, P. C. et al. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682–703 (2016).

    Article  Google Scholar 

  51. May, L. & Spears, B. M. (eds) Loch Leven: 40 Years of Scientific Research. Understanding the Links Between Pollution, Climate Change and Ecological Response (Developments in Hydrobiology Vol. 218, Springer, Dordecht, 2012).

  52. Scheffer, M. & Jeppesen, E. Regime shifts in shallow lakes. Ecosystems 10, 1–3 (2007).

    Article  Google Scholar 

  53. Janse, J. H. et al. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake. Limnologica 38, 203–219 (2008).

    Article  CAS  Google Scholar 

  54. Bayley, S. E., Creed, I. F., Sass, G. Z. & Wong, A. S. Frequent regime shifts in trophic states in shallow lakes on the Boreal Plain: alternative “unstable” states? Limnol. Oceanogr. 52, 2002–2012 (2007).

    Article  Google Scholar 

  55. Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. de Wit, H. A. et al. Current browning of surface waters will be further promoted by wetter climate. Environ. Sci. Technol. Lett. 3, 430–435 (2016).

    Article  CAS  Google Scholar 

  57. Vuorenmaa, J. et al. Water quality of a small headwater lake reflects long-term variations in deposition, climate and in-lake processes. Boreal Environ. Res. 19, 47–66 (2014).

    CAS  Google Scholar 

  58. Couture, R. M., Wit, H. A., Tominaga, K., Kiuru, P. & Markelov, I. Oxygen dynamics in a boreal lake responds to long‐term changes in climate, ice phenology, and DOC inputs. J. Geophys. Res. Biogeosci. 120, 2441–2456 (2015).

    Article  CAS  Google Scholar 

  59. Seekell, D. A., Carpenter, S. R., Cline, T. J. & Pace, M. J. Conditional heteroscedasticity forecasts regime shift in a whole-ecosystem experiment. Ecosystems 15, 741–747 (2012).

    Article  Google Scholar 

  60. Seekell, D. A., Carpenter, S. R. & Pace, M. L. Conditional heteroscedasticity as a leading indicator of ecological regime shifts. Am. Nat. 178, 442–451 (2011).

    Article  PubMed  Google Scholar 

  61. Trolle, D. et al. Advancing projections of phytoplankton responses to climate change through ensemble modelling. Environ. Model. Softw. 61, 371–379 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

B.M.S., E.J., L.C., S.J.T. and E.B.M. were supported in part by the MARS project (Managing Aquatic ecosystems and water Resources under multiple Stress) funded under the 7th EU Framework Programme, Theme 6 (environment including climate change), contract number 603378 (http://www.mars-project.eu/). B.M.S., L.M., L.C. and S.I. were supported in part by a grant from the Scottish government (RESAS) on ‘Predicting the impact of current and future drivers of change upon aquatic ecology’. S.I. was supported by a Natural Environment Research Council (NERC) PhD Studentship. R.A. acknowledges support by the EU Mantel project - a Marie Sklodowska-Curie Action; European Joint Doctorate Innovative Training Network (EJD, ITN). We thank all who have contributed to, and continue to support, the globally important long-term monitoring programmes of Loch Leven, Windermere, the Swedish Lakes (including Lake Härsvatten) and Müggelsee featured in this Perspective. We thank all with the foresight to collect and comprehensively assess the outcomes of the management activities at Calhoun Lake and Lake Engelshom. This Perspective was conceived during the workshop ‘Critical transitions in lakes’, December 2015, Edinburgh, UK, and supported by CEH and NERC through a National Capability programme on Ecosystem Processes & Resilience.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the original concept of this paper and to the development of the text. B.M.S., M.N.F., E.J., T.A.D., B.J.H. and S.J.T. led the preparation of the text and paper structure. S.I., B.J.H., E.J., M.N.F. and S.J.T. prepared the figures with data provided by E.B.M., H.W., S.I., L.M., B.J.H., R.A., M.S., M.N.F. and A.S.G. B.M.S. led the final draft preparation and submission stages with comments from all authors being received prior to submission.

Corresponding author

Correspondence to Bryan M. Spears.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spears, B.M., Futter, M.N., Jeppesen, E. et al. Ecological resilience in lakes and the conjunction fallacy. Nat Ecol Evol 1, 1616–1624 (2017). https://doi.org/10.1038/s41559-017-0333-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0333-1

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene