Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Velocity of change in vegetation productivity over northern high latitudes

Abstract

Warming is projected to increase the productivity of northern ecosystems. However, knowledge on whether the northward displacement of vegetation productivity isolines matches that of temperature isolines is still limited. Here we compared changes in the spatial patterns of vegetation productivity and temperature using the velocity of change concept, which expresses these two variables in the same unit of displacement per time. We show that across northern regions (>50° N), the average velocity of change in growing-season normalized difference vegetation index (NDVIGS, an indicator of vegetation productivity; 2.8 ± 1.1 km yr−1) is lower than that of growing-season mean temperature (T GS; 5.4 ± 1.0 km yr−1). In fact, the NDVIGS velocity was less than half of the T GS velocity in more than half of the study area, indicating that the northward movement of productivity isolines is much slower than that of temperature isolines across the majority of northern regions (about 80% of the area showed faster changes in temperature than productivity isolines). We tentatively attribute this mismatch between the velocities of productivity and temperature to the effects of limited resource availability and vegetation acclimation mechanisms. Analyses of ecosystem model simulations further suggested that limited nitrogen availability is a crucial obstacle for vegetation to track the warming trend.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The velocity of NDVIGS and T GS from 1982 to 2011 over northern high latitudes (north of 50° N).
Fig. 2: The velocity and direction of the vector of change in vegetation phenology and physiology over the northern high latitudes (north of 50° N) from 1982 to 2011 and comparison with the velocity of corresponding temperature metrics.

Similar content being viewed by others

References

  1. Rosenzweig, C. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L. et al.) 79–131 (Cambridge Univ. Press, Cambridge, 2007).

  2. Elmendorf, S. C. et al. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat. Clim. Change 2, 453–457 (2012).

    Article  Google Scholar 

  3. Buitenwerf, R., Rose, L. & Higgins, S. I. Three decades of multi-dimensional change in global leaf phenology. Nat. Clim. Change 5, 364–368 (2015).

    Article  Google Scholar 

  4. Vitasse, Y., Porté, A. J., Kremer, A., Michalet, R. & Delzon, S. Responses of canopy duration to temperature changes in four temperate tree species: relative contributions of spring and autumn leaf phenology. Oecologia 161, 187–198 (2009).

    Article  PubMed  Google Scholar 

  5. Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Wu, Z., Dijkstra, P., Koch, G. W., Peñuelas, J. & Hungate, B. A. Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation. Glob. Change Biol. 17, 927–942 (2011).

    Article  Google Scholar 

  7. Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).

    Article  PubMed  Google Scholar 

  8. Peñuelas, J. et al. Evidence of current impact of climate change on life: a walk from genes to the biosphere. Glob. Change Biol. 19, 2303–2338 (2013).

    Article  Google Scholar 

  9. Hikosaka, K., Ishikawa, K., Borjigidai, A., Muller, O. & Onoda, Y. Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 57, 291–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Way, D. A. & Oren, R. Differential responses to changes in growth temperature between trees from different functional groups and biomes: a review and synthesis of data. Tree Physiol. 30, 669–688 (2010).

    Article  PubMed  Google Scholar 

  11. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  CAS  Google Scholar 

  12. Thomas, R. Q., Canham, C. D., Weathers, K. C. & Goodale, C. L. Increased tree carbon storage in response to nitrogen deposition in the US. Nat. Geosci. 3, 13–17 (2010).

    Article  CAS  Google Scholar 

  13. Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ackerly, D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487 (2010).

    Article  Google Scholar 

  15. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Dobrowski, S. Z. et al. The climate velocity of the contiguous United States during the 20th century. Glob. Change Biol. 19, 241–251 (2013).

    Article  Google Scholar 

  19. Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Bi, J., Xu, L., Samanta, A., Zhu, Z. & Myneni, R. Divergent Arctic–boreal vegetation changes between North America and Eurasia over the past 30 years. Remote Sens. 5, 2093–2112 (2013).

    Article  Google Scholar 

  21. LoPresti, A. et al. Rate and velocity of climate change caused by cumulative carbon emissions. Environ. Res. Lett. 10, 095001 (2015).

    Article  CAS  Google Scholar 

  22. Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G. & Nemani, R. R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702 (1997).

    Article  CAS  Google Scholar 

  24. Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).

    Article  Google Scholar 

  25. Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Granath, G. et al. Photosynthetic performance in Sphagnum transplanted along a latitudinal nitrogen deposition gradient. Oecologia 159, 705–715 (2009).

    Article  PubMed  Google Scholar 

  27. Livingston, N. J., Guy, R. D., Sun, Z. J. & Ethier, G. J. The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant Cell Environ. 22, 281–289 (1999).

    Article  Google Scholar 

  28. Kimball, J. S. et al. Recent climate-driven increases in vegetation productivity for the western Arctic: evidence of an acceleration of the northern terrestrial carbon cycle. Earth Interact. 11, 1–30 (2007).

    Article  Google Scholar 

  29. Xia, J. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Forkel, M. et al. Codominant water control on global interannual variability and trends in land surface phenology and greenness. Glob. Change Biol. 21, 3414–3435 (2015).

    Article  Google Scholar 

  31. Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Laube, J. et al. Chilling outweighs photoperiod in preventing precocious spring development. Glob. Change Biol. 20, 170–182 (2014).

    Article  Google Scholar 

  33. Zhang, X., Tarpley, D. & Sullivan, J. T. Diverse responses of vegetation phenology to a warming climate. Geophys. Res. Lett. 34, L19405 (2007).

    Article  Google Scholar 

  34. Barichivich, J. et al. Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Glob. Change Biol. 19, 3167–3183 (2013).

    Article  Google Scholar 

  35. Liu, Q. et al. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Change Biol. 22, 644–655 (2016).

    Article  CAS  Google Scholar 

  36. Gepstein, S. & Thimann, K. V. Changes in the abscisic acid content of oat leaves during senescence. Proc. Natl Acad. Sci. USA 77, 2050–2053 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Melillo, J. M. et al. Soil warming, carbon–nitrogen interactions, and forest carbon budgets. Proc. Natl Acad. Sci. USA 108, 9508–9512 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Frost, G. V. & Epstein, H. E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Change Biol. 20, 1264–1277 (2014).

    Article  Google Scholar 

  40. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate–carbon cycle feedbacks using five dynamic global vegetation models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  41. Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Glob. Biogeochem. Cycles 26, GB1014 (2012).

    Article  CAS  Google Scholar 

  42. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob. Change Biol. 19, 45–63 (2013).

    Article  Google Scholar 

  43. Likens, G. Long-term Studies in Ecology (Springer, New York, 1989).

  44. Jung, M. et al. Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 116, G00J07 (2011).

    Article  Google Scholar 

  45. Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water. Resour. Res. 50, 7505–7514 (2014).

    Article  Google Scholar 

  46. Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).

    Article  Google Scholar 

  47. Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).

    Article  Google Scholar 

  48. Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306–310 (2016).

    Article  CAS  Google Scholar 

  49. Cong, N. et al. Changes in satellite-derived spring vegetation green-up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Glob. Change Biol. 19, 881–891 (2013).

    Article  Google Scholar 

  50. Piao, S., Fang, J., Zhou, L., Ciais, P. & Zhu, B. Variations in satellite-derived phenology in China’s temperate vegetation. Glob. Change Biol. 12, 672–685 (2006).

    Article  Google Scholar 

  51. White, M. A. et al. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Glob. Change Biol. 15, 2335–2359 (2009).

    Article  Google Scholar 

  52. Zheng, B., Chenu, K. & Chapman, S. C. Velocity of temperature and flowering time in wheat-assisting breeders to keep pace with climate change. Glob. Change Biol. 22, 921–933 (2016).

    Article  Google Scholar 

  53. Fensholt, R. & Proud, S. R. Evaluation of earth observation based global long term vegetation trends—comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 119, 131–147 (2012).

    Article  Google Scholar 

  54. Piao, S. et al. Leaf onset in the Northern Hemisphere triggered by daytime temperature. Nat. Commun. 6, 6911 (2015).

    Article  CAS  PubMed  Google Scholar 

  55. Jeong, S., Ho, C.-H., Gim, H.-J. & Brown, M. E. Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008. Glob. Change Biol. 17, 2385–2399 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (41530528), and the 111 Project (B14001). I.A.J., P.C. and J.P. were supported by the European Research Council Synergy grant SyG-2013-610028 IMBALANCE-P.

Author information

Authors and Affiliations

Authors

Contributions

S.Pi. designed research; M.H. performed analysis; and all authors contributed to the interpretation of the results and the writing of the paper.

Corresponding author

Correspondence to Shilong Piao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Description, Supplementary Figures 1–17, Supplementary Tables 1–3, and references

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Piao, S., Janssens, I.A. et al. Velocity of change in vegetation productivity over northern high latitudes. Nat Ecol Evol 1, 1649–1654 (2017). https://doi.org/10.1038/s41559-017-0328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0328-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing