Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Network structure embracing mutualism–antagonism continuums increases community robustness

Abstract

Theory predicts that contrasting properties of mutualistic and antagonistic networks differentially promote community resilience to species loss. However, the outcome of most ecological interactions falls within a continuum between mutualism and antagonism, and we ignore the extent to which this interactions’ continuum might influence community stability. Using a large data set of interactions, we compared co-extinction cascades that either consider or ignore the mix of beneficial and detrimental actions that parrots exert on plants. When the antagonism–mutualism continuum was considered, a combination of the properties that separately enhance community stability in ecological networks emerged. This combination of properties led to an overall increase of the parrot community robustness to face plant species loss. Our results highlight that the conditional outcomes of interactions can influence the structure of ecological networks, thus affecting our predictions of community stability against eventual changes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Trophic network of parrot species feeding on plant species.
Fig. 2: Odds ratio estimates and confidence intervals (95%) extracted from the generalized linear models that assess the plant functional traits explaining each module.
Fig. 3: Simulations of parrot co-extinction rates triggered by plant species removal based on the observed trophic network.
Fig. 4: Simulations of parrot co-extinction rates triggered by plant species removal.
Fig. 5: Pictures of various antagonistic and mutualistic interactions recorded during fieldwork.

References

  1. Bronstein, J. L. Conditional outcomes in mutualistic interactions. Trends Ecol. Evol. 9, 214–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Thompson, J. N. The Coevolutionary Process (Univ. Chicago Press, Chicago, 1994).

    Book  Google Scholar 

  3. Thompson, J. N. The Geographic Mosaic of Coevolution (Univ. Chicago Press, Chicago, 2005).

    Book  Google Scholar 

  4. Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, Princeton, 2014).

    Google Scholar 

  5. Shantz, A., Lemoine, N. & Burkepile, D. Nutrient loading alters the performance of key nutrient exchange mutualisms. Ecol. Lett. 19, 20–28 (2016).

    Article  PubMed  Google Scholar 

  6. Morris, W. F. et al. Direct and interactive effects of enemies and mutualists on plant performance: a meta-analysis. Ecology 88, 1021–1029 (2007).

    Article  PubMed  Google Scholar 

  7. Larimer, A. L., Bever, J. D. & Clay, K. The interactive effects of plant microbial symbionts: a review and meta-analysis. Symbiosis 51, 139–148 (2010).

    Article  Google Scholar 

  8. Chamberlain, S. A., Bronstein, J. L. & Rudgers, J. A. How context dependent are species interactions? Ecol. Lett. 17, 881–890 (2014).

    Article  PubMed  Google Scholar 

  9. Blanco, G., Tella, J. L., Potti, J. & Baz, A. Feather mites on birds: costs of parasitism or conditional outcomes? J. Avian Biol. 32, 271–274 (2001).

    Article  Google Scholar 

  10. Maruyama, P. K., Vizentin-Bugoni, J., Dalsgaard, B., Sazima, I. & Sazima, M. Nectar robbery by a hermit hummingbird: association to floral phenotype and its influence on flowers and network structure. Oecologia 178, 783–793 (2015).

    Article  PubMed  Google Scholar 

  11. Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Yoshikawa, T. & Isagi, Y. Determination of temperate bird-flower interactions as entangled mutualistic and antagonistic sub-networks: characterization at the network and species levels. J. Anim. Ecol. 83, 651–660 (2014).

    Article  PubMed  Google Scholar 

  13. Fleming, T. H. & Kress, W. J. The Ornaments of Life: Coevolution and Conservation in the Tropics (Univ. Chicago Press, Chicago, 2013).

    Book  Google Scholar 

  14. Heleno, R. H., Olesen, J. M., Nogales, M., Vargas, P. & Traveset, A. Seed dispersal networks in the Galápagos and the consequences of alien plant invasions. Proc. R. Soc. B 280, 20122112 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bronstein, J. L. in Insect–Plant Interactions Vol. IV (ed. Bernays, E. A.) 1–44 (CRC Press, Boca Raton, 1992).

    Google Scholar 

  16. Norconk, M. A., Grafton, B. W. & Conklin-Brittain, N. L. Seed dispersal by neotropical seed predators. Am. J. Primatol. 45, 103–126 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Vander Wall, S. B., Kuhn, K. M. & Beck, M. J. Seed removal, seed predation, and secondary dispersal. Ecology 86, 801–806 (2005).

    Article  Google Scholar 

  18. Pilosof, S., Porter, M. A., Pascual, M. & Kéfi, S. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017).

    Article  Google Scholar 

  19. Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity. Annu. Rev. Ecol. Evol. S. 38, 567–593 (2007).

  20. Montesinos-Navarro, A., Segarra-Moragues, J. G., Valiente-Banuet, A. & Verdú, M. The network structure of plant-arbuscular mycorrhizal fungi. New Phytol. 194, 536–547 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Donatti, C. I. et al. Analysis of a hyper-diverse seed dispersal network: modularity and underlying mechanisms. Ecol. Lett. 14, 773–781 (2011).

    Article  PubMed  Google Scholar 

  22. Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl Acad. Sci. USA 104, 19891–19896 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sinclair, A., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator-prey system. Nature 425, 288–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Lewinsohn, T. M., Inácio Prado, P., Jordano, P., Bascompte, J. & Olesen, J. M. Structure in plant–animal interaction assemblages. Oikos 113, 174–184 (2006).

    Article  Google Scholar 

  26. Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burgos, E. et al. Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313 (2007).

    Article  PubMed  Google Scholar 

  28. Okuyama, T. & Holland, J. N. Network structural properties mediate the stability of mutualistic communities. Ecol. Lett. 11, 208–216 (2008).

    Article  PubMed  Google Scholar 

  29. Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E. & Taylor, W. W. Compartments revealed in food-web structure. Nature 426, 282–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Teng, J. & McCann, K. S. Dynamics of compartmented and reticulate food webs in relation to energetic flows. Am. Nat. 164, 85–100 (2004).

    Article  PubMed  Google Scholar 

  31. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Genrich, C. M., Mello, M. A., Silveira, F. A., Bronstein, J. L. & Paglia, A. P. Duality of interaction outcomes in a plant-frugivore multilayer network. Oikos 126, 361–368 (2017).

    Article  CAS  Google Scholar 

  33. Young, L. M., Kelly, D. & Nelson, X. J. Alpine flora may depend on declining frugivorous parrot for seed dispersal. Biol. Conserv. 147, 133–142 (2012).

    Article  Google Scholar 

  34. Blanco, G., Hiraldo, F., Rojas, A., Dénes, F. V. & Tella, J. L. Parrots as key multilinkers in ecosystem structure and functioning. Ecol. Evol. 5, 4141–4160 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Blanco, G. et al. Internal seed dispersal by parrots: an overview of a neglected mutualism. PeerJ 4, e1688 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tella, J. L. et al. Parrots as overlooked seed dispersers. Front. Ecol. Environ. 13, 338–339 (2015).

    Article  Google Scholar 

  37. Baños-Villalba, A. et al. Seed dispersal by macaws shapes the landscape of an Amazonian ecosystem. Sci. Rep. 7, 7373 (2017).

  38. Fontaine, C. et al. The ecological and evolutionary implications of merging different types of networks. Ecol. Lett. 14, 1170–1181 (2011).

    Article  PubMed  Google Scholar 

  39. Johnson, N., Graham, J. & Smith, F. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 135, 575–585 (1997).

    Article  Google Scholar 

  40. Hoover, S. E. et al. Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism. Ecol. Lett. 15, 227–234 (2012).

    Article  PubMed  Google Scholar 

  41. Koide, R. The nature of growth depressions in sunflower caused by vesicular-arbuscular mycorrhizal infection. New Phytol. 99, 449–462 (1985).

    Article  Google Scholar 

  42. Ragusa-Netto, J. & Fecchio, A. Plant food resources and the diet of a parrot community in a gallery forest of the southern Pantanal (Brazil). Braz. J. Biol. 66, 1021–32 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Gleiser, G. et al. The southernmost parakeet might be enhancing pollination of a dioecious ancient conifer. Ecology http://dx.doi.org/10.1002/ecy.1938 (2017).

  44. Lee, A. T. et al. Diet and geophagy across a western Amazonian parrot assemblage. Biotropica 46, 322–330 (2014).

    Article  Google Scholar 

  45. Tella, J. L. et al. Endangered plant-parrot mutualisms: seed tolerance to predation makes parrots pervasive dispersers of the Parana pine. Sci. Rep. 6, 31709 (2016).

  46. Toft, C. A. & Wright, T. F. Parrots of the Wild: A Natural History of the World’s Most Captivating Birds (Univ. California Press, Berkeley, 2015).

    Google Scholar 

  47. Navarro, G. & Maldonado, M. Geografía ecológica de Bolivia: Vegetación y ambientes acuáticos (Centro de Ecología Simón I. Patiño, Cochabamba, 2002).

  48. Tella, J. L., Rojas, A., Carrete, M. & Hiraldo, F. Simple assessments of age and spatial population structure can aid conservation of poorly known species. Biol. Conserv. 167, 425–434 (2013).

    Article  Google Scholar 

  49. Forshaw, J. M. Parrots of the World: An Identification Guide (Princeton Univ. Press, Princeton, 2006).

    Google Scholar 

  50. The Plant List Version 1.1. (accessed 1 January 2013); http://www.theplantlist.org/

  51. López, R. P. Diversidad florística y endemismo de los valles secos bolivianos. Ecol. Bolivia 38, 27–60 (2003).

    Google Scholar 

  52. Atahuachi-Burgos, M. et al. La guía“Darwin” de las flores de los valles bolivianos (Darwin Initiative, Le Paz, 2005).

  53. Juniper, A. & Parr, M. Parrots: A Guide to the Parrots of the World (Christopher Helm, London, 2010).

    Google Scholar 

  54. Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S. & Terry, J. Cascading effects of bird functional extinction reduce pollination and plant density. Science 331, 1068–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Atmar, W. & Patterson, B. D. The measure of order and disorder in the distribution of species in fragmented habitat. Oecologia 96, 373–382 (1993).

    Article  PubMed  Google Scholar 

  56. Almeida-Neto, M., Guimaraes, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).

    Article  Google Scholar 

  57. Vacher, C., Piou, D. & Desprez-Loustau, M.-L. Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS ONE 3, e1740 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guimarães, P. R. & Guimarães, P. Improving the analyses of nestedness for large sets of matrices. Environ. Modell. Softw. 21, 1512–1513 (2006).

    Article  Google Scholar 

  59. Joppa, L. N. & Williams, R. The influence of single elements on nested community structure. Methods Ecol. Evol. 2, 541–549 (2011).

    Article  Google Scholar 

  60. Danon, L., Diaz-Guilera, A., Duch, J. & Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005, P09008 (2005).

    Google Scholar 

  61. Guimerà, R. & Amaral, L. A. N. Cartography of complex networks: modules and universal roles. J. Stat. Mech. Theory Exp. 2005, P02001 (2005).

    Google Scholar 

  62. Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70, 025101 (2004).

    Google Scholar 

  63. Guimerà, R., Sales-Pardo, M. & Amaral, L. A. N. Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007).

    Google Scholar 

  64. Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).

    PubMed  Google Scholar 

  65. Guimerà, R. & Amaral, L. A. N. Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).

    Article  PubMed  Google Scholar 

  67. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2014).

  68. Amarasekare, P. Spatial dynamics of mutualistic interactions. J. Anim. Ecol. 73, 128–142 (2004).

    Article  Google Scholar 

  69. Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  70. Valiente-Banuet, A. & Verdú, M. Human impacts on multiple ecological networks act synergistically to drive ecosystem collapse. Front. Ecol. Environ. 11, 408–413 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. de la Riva, A. Rojas, E. Pacifico, H. Garrido, A. Requejo, I. Vera, R. Rojas, J. Paca, G. Flores, S. Huici, E. Yucra and D. Alberto for fieldwork assistance, and A. Toledo for making the parrot drawings. M. de la Riva gave permission to publish his photographs in this article. M. Verdú greatly helped to improve the manuscript. Funding was provided by Zoo de Barcelona and Biorena (January 2011), Junta de Andalucía (PAI RNM107 to J.L.T. and F.H., April–September 2011), Fundación Biodiversidad (2012–2013), and a Severo Ochoa ‘microproyecto’ award (to F.H.). A.M.-N. was supported by a Juan de la Cierva-Incorporación postdoctoral contract from the Spanish Ministerio de Economía y Competitividad (IJCI-2015-23498).

Author information

Authors and Affiliations

Authors

Contributions

G.B., J.L.T., F.H. and A.M.-N. designed the study. G.B., J.L.T. and F.H. compiled the data, A.M.-N. performed the analyses, G.B. and A.M.N. wrote the first draft of the manuscript and all the authors contributed substantially to improving the manuscript.

Corresponding author

Correspondence to Alicia Montesinos-Navarro.

Ethics declarations

Competing interests

The authors have no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Fig 1, Supplementary Table 1

Supplementary Data 1

File with 6 sheets: 1) Plant traits. Each plant taxa assignment to growth form, dominance, endemicity, and module. 2) Quant. plant–parrot interaction. Number of flocks of each parrot species observed on each plant species. 3) Quali. multilayer network. Presence/absence of plant–parrot interaction, without distinguishing between mutualistic and antagonistic interactions. 4) Quali. mutual. sub-network. Presence/absence of a mutualistic interaction. 5) Quali. antag. subnetwork. Presence/absence of an antagonistic interaction. 6) Weights. Weights used in co-extinction cascades simulations

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montesinos-Navarro, A., Hiraldo, F., Tella, J.L. et al. Network structure embracing mutualism–antagonism continuums increases community robustness. Nat Ecol Evol 1, 1661–1669 (2017). https://doi.org/10.1038/s41559-017-0320-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0320-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing