Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Planetary boundaries for a blue planet

Abstract

Concepts underpinning the planetary boundaries framework are being incorporated into multilateral discussions on sustainability, influencing international environmental policy development. Research underlying the boundaries has primarily focused on terrestrial systems, despite the fundamental role of marine biomes for Earth system function and societal wellbeing, seriously hindering the efficacy of the boundary approach. We explore boundaries from a marine perspective. For each boundary, we show how improved integration of marine systems influences our understanding of the risk of crossing these limits. Better integration of marine systems is essential if planetary boundaries are to inform Earth system governance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Shift in understanding of the uncertainty and risks associated with crossing the planetary boundaries arising from more comprehensive integration of marine systems into the framework.
Fig. 2: Examples of habitat degradation occurring in marine ecosystems that have the potential to impact on global climate through changes to carbon storage, and transfer of energy and moisture to the atmosphere.
Fig. 3: Global distribution of HANPP presented as percentage of net primary production (NPP) used.

References

  1. 1.

    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: the Great Acceleration. Anthropocene Rev. 2, 81–98 (2015).

    Article  Google Scholar 

  2. 2.

    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).

    Article  Google Scholar 

  3. 3.

    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  4. 4.

    Galaz, V. et al. ‘Planetary boundaries’—exploring the challenges for global environmental governance. Curr. Opin. Env. Sust. 4, 80–87 (2012).

    Article  Google Scholar 

  5. 5.

    Galaz, V., Biermann, F., Folke, C., Nilsson, M. & Olsson, P. Global environmental governance and planetary boundaries: an introduction. Ecol. Econ. 81, 1–3 (2012).

    Article  Google Scholar 

  6. 6.

    Biermann, F. Planetary boundaries and Earth system governance: exploring the links. Ecol. Econ. 81, 4–9 (2012).This paper discusses the significant governance challenges associated with Earth system governance and the planetary boundaries framework in particular.

    Article  Google Scholar 

  7. 7.

    Frischknecht, R., Stolz, P. & Tschümperlin, L. National environmental footprints and planetary boundaries: from methodology to policy implementation 59th LCA forum, Swiss Federal Institute of Technology, Zürich, June 12, 2015. Int. J. Life Cycle Ass . 21, 601–605 (2016).

    Article  Google Scholar 

  8. 8.

    Webb, T. J. Marine and terrestrial ecology: unifying concepts, revealing differences. Trends Ecol. Evol. 27, 535–541 (2012).This review discusses the fundamental differences in ecosytem structure and function between marine and terrestrial systems.

    Article  Google Scholar 

  9. 9.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Pauly, D., Watson, R. & Alder, J. Global trends in world fisheries: impacts on marine ecosystems and food security. Phil. Trans. R. Soc. B 360, 5–12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Running, S. W. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Rockstrom, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    West, P. C., Narisma, G. T., Barford, C. C., Kucharik, C. J. & Foley, J. A. An alternative approach for quantifying climate regulation by ecosystems. Front. Ecol. Env. 9, 126–133 (2011).

    Article  Google Scholar 

  14. 14.

    Snyder, P. K., Delire, C. & Foley, J. A. Evaluating the influence of different vegetation biomes on the global climate. Clim. Dynam. 23, 279–302 (2004).

    Article  Google Scholar 

  15. 15.

    Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).

    Article  Google Scholar 

  16. 16.

    Delire, C. et al. Simulated response of the atmosphere–ocean system to deforestation in the Indonesian Archipelago. Geophys. Res. Lett. 28, 2081–2084 (2001).

    Article  Google Scholar 

  17. 17.

    Adams, E. E. World Forest Area Still on the Decline (Earth Policy Institute, New Brunswick, 2012); http://www.earth-policy.org/?/indicators/C56/.

  18. 18.

    Borges, A. V. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean? Estuaries 28, 3–27 (2005).

    Article  CAS  Google Scholar 

  19. 19.

    Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Env. 9, 552–560 (2011).

    Article  Google Scholar 

  20. 20.

    Hood, E., Battin, T. J., Fellman, J., O’Neel, S. & Spencer, R. G. M. Storage and release of organic carbon from glaciers and ice sheets. Nat. Geosci. 8, 91–96 (2015).

    Article  CAS  Google Scholar 

  21. 21.

    van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009).

    Article  CAS  Google Scholar 

  22. 22.

    Pendleton, L. et al. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7, e43542 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Betts, A. K. & Ball, J. H. Albedo over the boreal forest. J. Geophys. Res.-Atmos. 102, 28901–28909 (1997).

    Article  Google Scholar 

  24. 24.

    Allison, I., Brandt, R. E. & Warren, S. G. East Antarctic sea ice: albedo, thickness distribution, and snow cover. J. Geophys. Res.-Oceans 98, 12417–12429 (1993).

    Article  Google Scholar 

  25. 25.

    Tokeshi, M. & Arakaki, S. Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685, 27–47 (2012).

    Article  Google Scholar 

  26. 26.

    Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013).

    Article  Google Scholar 

  27. 27.

    Gittman, R. K., Scyphers, S. B., Smith, C. S., Neylan, I. P. & Grabowski, J. H. Ecological consequences of shoreline hardening: a meta-analysis. Bioscience 66, 763–773 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Collie, J. et al. Indirect effects of bottom fishing on the productivity of marine fish. Fish Fish. 18, 619–637 (2017).

    Article  Google Scholar 

  29. 29.

    Berg, T., Fürhaupter, K., Teixeira, H., Uusitalo, L. & Zampoukas, N. The Marine Strategy Framework Directive and the ecosystem-based approach – pitfalls and solutions. Mar. Pollut. Bull. 96, 18–28 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Rice, J. et al. Indicators for sea-floor integrity under the European Marine Strategy Framework Directive. Ecol. Indic. 12, 174–184 (2012).

    Article  Google Scholar 

  31. 31.

    Samhouri, J. F., Haupt, A. J., Levin, P. S., Link, J. S. & Shuford, R. Lessons learned from developing integrated ecosystem assessments to inform marine ecosystem-based management in the USA. ICES J. Mar. Sci. 71, 1205–1215 (2014).

    Article  Google Scholar 

  32. 32.

    Carpenter, S. R. & Bennett, E. M. Reconsideration of the planetary boundary for phosphorus. Environ. Res. Lett. 6, 014009 (2011).

    Article  CAS  Google Scholar 

  33. 33.

    Liu, C., Kroeze, C., Hoekstra, A. Y. & Gerbens-Leenes, W. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol. Indic. 18, 42–49 (2012).

    Article  CAS  Google Scholar 

  34. 34.

    Martiny, A. C., Vrugt, J. A. & Lomas, M. W. Concentrations and ratios of particulate organic carbon, nitrogen, and phosphorus in the global ocean. Sci. Data 1, 140048 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Capone, D. G. & Hutchins, D. A. Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nat. Geosci. 6, 711–717 (2013).

    Article  CAS  Google Scholar 

  36. 36.

    Reed, D. C. & Harrison, J. A. Linking nutrient loading and oxygen in the coastal ocean: a new global scale model. Glob. Biogeochem. Cycles 30, 447–459 (2016).

    Article  CAS  Google Scholar 

  37. 37.

    Sawyer, A. H., David, C. H. & Famiglietti, J. S. Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353, 705–707 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).This review explores the implications of nutrient enrichment for oceanic nutrient cycles and microbial activity.

    Article  CAS  Google Scholar 

  40. 40.

    Luong, A. D. et al. Inferring time-variable effects of nutrient enrichment on marine ecosystems using inverse modelling and ecological network analysis. Sci. Total Environ. 493, 708–718 (2014).

    Article  CAS  Google Scholar 

  41. 41.

    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).

    Article  CAS  Google Scholar 

  42. 42.

    Jickells, T. D. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308, 67–71 (2005).

    Article  CAS  Google Scholar 

  43. 43.

    Eero, M., Andersson, H. C., Almroth-Rosell, E. & MacKenzie, B. R. Has eutrophication promoted forage fish production in the Baltic Sea? Ambio 45, 649–660 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Roman, J. & McCarthy, J. J. The whale pump: marine mammals enhance primary productivity in a coastal basin. PLoS ONE 5, e13255 (2010). 

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).

    Article  CAS  Google Scholar 

  46. 46.

    Jennings, S. & Wilson, R. W. Fishing impacts on the marine inorganic carbon cycle. J. Appl. Ecol. 46, 976–982 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    Mace, G. M. et al. Approaches to defining a planetary boundary for biodiversity. Glob. Environ. Change 28, 289–297 (2014).This review explores the advantages and disadvantages of different approaches to characterizing a planetary boundary focused on biodiversity and biosphere integrity.

    Article  Google Scholar 

  48. 48.

    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).

    Article  CAS  Google Scholar 

  49. 49.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article  CAS  Google Scholar 

  50. 50.

    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE 10, e0133794 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Birks, H. J. B., Felde, V. A. & Seddon, A. W. R. Biodiversity trends within the Holocene. Holocene 26, 994–1001 (2016).

    Article  Google Scholar 

  53. 53.

    Webb, T. J. & Mindel, B. L. Global patterns of extinction risk in marine and non-marine systems. Curr. Biol. 25, 506–511 (2015).

    Article  CAS  Google Scholar 

  54. 54.

    Scott, F., Blanchard, J. L. & Andersen, K. H. mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling. Methods Ecol. Evol. 5, 1121–1125 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Fulton, E. A., Smith, A. D. M. & Punt, A. E. Which ecological indicators can robustly detect effects of fishing? ICES J. Mar. Sci. 62, 540–551 (2005).

    Article  Google Scholar 

  56. 56.

    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3, 41 (2012).

    Article  Google Scholar 

  57. 57.

    Haberl, H., Erb, K.-H. & Krausmann, F. Human appropriation of net primary production: patterns, trends, and planetary boundaries. Annu. Rev. Env. Resour. 39, 363–391 (2014).

    Article  Google Scholar 

  58. 58.

    Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).

    Article  Google Scholar 

  59. 59.

    Pauly, D. et al. Towards sustainability in world fisheries. Nature 418, 689–695 (2002).

    Article  CAS  Google Scholar 

  60. 60.

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    Article  CAS  Google Scholar 

  61. 61.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Article  Google Scholar 

  62. 62.

    Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    Caldeira, K., Bala, G. & Cao, L. The science of geoengineering. Annu. Rev. Earth Planet. Sci. 41, 231–256 (2013).

    Article  CAS  Google Scholar 

  64. 64.

    Cornell, S. On the system properties of the planetary boundaries. Ecol. Soc. 17, r2 (2012).

    Article  Google Scholar 

  65. 65.

    de Vries, W., Kros, J., Kroeze, C. & Seitzinger, S. P. Assessing planetary and regional nitrogen boundaries related to food security and adverse environmental impacts. Curr. Opin. Environ. Sustain. 5, 392–402 (2013).

    Article  Google Scholar 

  66. 66.

    Anderies, J. M., Carpenter, S. R., Steffen, W. & Rockstrom, J. The topology of non-linear global carbon dynamics: from tipping points to planetary boundaries. Environ. Res. Lett. 8, 044048 (2013).

    Article  CAS  Google Scholar 

  67. 67.

    Selkoe, K. A. et al. Principles for managing marine ecosystems prone to tipping points. Ecosyst. Health Sustain. 1, 1–18 (2015).

    Article  Google Scholar 

  68. 68.

    Walters, C. J. & Holling, C. S. Large-scale management experiments and learning by doing. Ecology 71, 2060–2068 (1990).

    Article  Google Scholar 

  69. 69.

    van Vuuren, D. P., Lucas, P. L., Hayha, T., Cornell, S. E. & Stafford-Smith, M. Horses for courses: analytical tools to explore planetary boundaries. Earth Syst. Dynam. 7, 267–279 (2016).

    Article  Google Scholar 

  70. 70.

    Fulton, E. A. et al. Lessons in modelling and management of marine ecosystems: the Atlantis experience. Fish Fish. 12, 171–188 (2011).

    Article  Google Scholar 

  71. 71.

    Griffith, G. P., Fulton, E. A., Gorton, R. & Richardson, A. J. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models. Conserv. Biol. 26, 1145–1152 (2012).

    Article  Google Scholar 

  72. 72.

    Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article  CAS  Google Scholar 

  73. 73.

    De La Mare, W. K. Tidier fisheries management requires a new MOP (management-oriented paradigm). Rev. Fish Biol. Fish. 8, 349–356 (1998).

    Article  Google Scholar 

  74. 74.

    Bunnefeld, N., Hoshino, E. & Milner-Gulland, E. J. Management strategy evaluation: a powerful tool for conservation? Trends Ecol. Evol. 26, 441–447 (2011).

    Article  Google Scholar 

  75. 75.

    Game, E. T. et al. Pelagic protected areas: the missing dimension in ocean conservation. Trends Ecol. Evol. 24, 360–369 (2009).

    Article  Google Scholar 

  76. 76.

    Biggs, R. et al. Toward principles for enhancing the resilience of ecosystem services. Annu. Rev. Env. Resour. 37, 421–448 (2012).

    Article  Google Scholar 

  77. 77.

    Galaz, V., Crona, B., Osterblom, H., Olsson, P. & Folke, C. Polycentric systems and interacting planetary boundaries - emerging governance of climate change–ocean acidification–marine biodiversity. Ecol. Econom. 81, 21–32 (2012).

    Article  Google Scholar 

  78. 78.

    Paavola, J. Institutions and environmental governance: a reconceptualization. Ecol. Econom. 63, 93–103 (2007).

    Article  Google Scholar 

  79. 79.

    Boyd, E., Nykvist, B., Borgström, S. & Stacewicz, I. A. Anticipatory governance for social–ecological resilience. Ambio 44, 149–161 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Guston, D. H. Innovation policy: not just a jumbo shrimp. Nature 454, 940–941 (2008).This commentary explores the concept of anticipatory governance and how this approach may better equip policymakers dealing with uncertainty.

    Article  CAS  Google Scholar 

  81. 81.

    Guston, D. H. Understanding ‘anticipatory governance’. Soc. Stud. Sci. 44, 218–242 (2014).

    Article  Google Scholar 

  82. 82.

    Raworth, K. A Safe and Just Space for Humanity: Can We Live Within the Doughnut? (Oxfam, Oxford, 2012).

    Google Scholar 

  83. 83.

    Sadowski, J. & Guston, D. H. ‘You caught me off guard’: probing the futures of complex engineered nanomaterials. J. Nanopart. Res. 18, 208 (2016).

    Article  Google Scholar 

  84. 84.

    Fabricius, K., De’ath, G., McCook, L., Turak, E. & Williams, D. M. Changes in algal, coral and fish assemblages along water quality gradients on the inshore Great Barrier Reef. Mar. Pollut. Bull. 51, 384–398 (2005).

    Article  CAS  Google Scholar 

  85. 85.

    Niiranen, S. et al. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web. Glob. Change Biol. 19, 3327–3342 (2013).

    Google Scholar 

  86. 86.

    Duplisea, D. E., Jennings, S., Malcolm, S. J., Parker, R. & Sivyer, D. B. Modelling potential impacts of bottom trawl fisheries on soft sediment biogeochemistry in the North Sea. Geochem. Trans. 2, 112–112 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Seitzinger, S. P. et al. Global river nutrient export: a scenario analysis of past and future trends. Glob. Biogeochem. Cycles 24, GB0A08 (2010).

    Google Scholar 

  88. 88.

    Egeghy, P. P. et al. The exposure data landscape for manufactured chemicals. Sci. Total Environ. 414, 159–166 (2012).

    Article  CAS  Google Scholar 

  89. 89.

    Jang, Y. C. et al. Estimating the global inflow and stock of plastic marine debris using material flow analysis: a preliminary approach. J. Korean Soc. Mar. Environ. Energy 18, 263–273 (2015).

    Article  Google Scholar 

  90. 90.

    Cózar, A. et al. Plastic debris in the open ocean. Proc. Natl Acad. Sci. USA 111, 10239–10244 (2014).

    Article  CAS  Google Scholar 

  91. 91.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, New York, 2013).

  92. 92.

    Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Schleussner, C. F. et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5  °C and 2  °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  94. 94.

    Norström, A. V. et al. Guiding coral reef futures in the Anthropocene. Front. Ecol. Env. 14, 490–498 (2016).

    Article  Google Scholar 

  95. 95.

    WMO Scientific Assessment of Ozone Depletion: 2006 Global Ozone Research and Monitoring Project Report No. 50 (NOAA, NASA, UNEP, WMO and EC, Geneva, 2007).

  96. 96.

    Zepp, R. G., Erickson Iii, D. J., Paul, N. D. & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Sci. 6, 286–300 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Farmery, A. K., Jennings, S., Gardner, C., Watson, R. A. & Green, B. S. Naturalness as a basis for incorporating marine biodiversity into life cycle assessment of seafood. Int. J. Life Cycle Ass. 22, 1571–1587 (2017).

  99. 99.

    Jennings, S., Dinmore, T. A., Duplisea, D. E., Warr, K. J. & Lancaster, J. E. Trawling disturbance can modify benthic production processes. J. Anim. Ecol. 70, 459–475 (2001).

    Article  Google Scholar 

  100. 100.

    Hiddink, J. G. et al. Cumulative impacts of seabed trawl disturbance on benthic biomass, production, and species richness in different habitats. Can. J. Fish. Aquat. Sci. 63, 721–736 (2006).

    Article  CAS  Google Scholar 

  101. 101.

    Reid, P. C. et al. in Advances in Marine Biology Vol. 56 (ed. Sims, D. W.) 1–150 (Elsevier Academic, San Diego, 2009).

  102. 102.

    Alleway, H. K. & Connell, S. D. Loss of an ecological baseline through the eradication of oyster reefs from coastal ecosystems and human memory. Conserv. Biol. 29, 795–804 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. 103.

    Gittman, R. K. et al. Engineering away our natural defenses: an analysis of shoreline hardening in the US. Front. Ecol. Env. 13, 301–307 (2015).

    Article  Google Scholar 

  104. 104.

    Brewer, P. Planetary boundaries: consider all consequences. Nat. Rep. Clim. Change 3, 117–118 (2009).

    Article  Google Scholar 

  105. 105.

    Rummer, J. L. & Munday, P. L. Climate change and the evolution of reef fishes: past and future. Fish Fish. 18, 22–39 (2017).This review explores the wide-reaching impacts of ocean acidification on marine ecosystems — beyond simply changing aragonite saturation state.

    Article  Google Scholar 

  106. 106.

    National Research Council of the National Academies Ocean Acidification: A National Strategy to Meet the Challenges of a Changing Ocean (National Academies Press, Washington DC, 2010).

  107. 107.

    Gephart, J. A. et al. The ‘seafood gap’ in the food-water nexus literature—issues surrounding freshwater use in seafood production chains. Adv. Water Resour. https://doi.org/10.1016/j.advwatres.2017.03.025 (2017).

    Article  Google Scholar 

  108. 108.

    Blanchard, J. L. et al. Cross-sectoral sustainability challenges for fisheries-dependent countries. Nat. Ecol. Evol. (in the press).

Download references

Acknowledgements

This project is supported by funding from the University of Tasmania and the Commonwealth Scientific and Industrial Research Organisation via the Centre for Marine Socioecology. R.A.W. acknowledges support from the Australian Research Council (Discovery project DP140101377) and E.J.M.-G. acknowledges a Pew Marine Fellowship. Thank you to R. Little for discussions relating to this paper. Availability of data used to produce Fig. 3 is described in the Supplementary Information.

Author information

Affiliations

Authors

Contributions

K.L.N. and J.L.B. conceived the idea for the Review. K.L.N. wrote the majority of the manuscript. R.A.W. performed the HANPP mapping. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Kirsty L. Nash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary notes, figures and references

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nash, K.L., Cvitanovic, C., Fulton, E.A. et al. Planetary boundaries for a blue planet. Nat Ecol Evol 1, 1625–1634 (2017). https://doi.org/10.1038/s41559-017-0319-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing