Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constrained vertebrate evolution by pleiotropic genes

Abstract

Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or ‘bodyplan’) remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates’ conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates’ organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic strategy for evaluating evolutionarily conserved developmental stages.
Fig. 2: Conserved embryonic stages identified by gene expression similarity.
Fig. 3: Regulatory quiescence and highly pleiotropic genes enriched in the mid-embryonic period.
Fig. 4: Temporally pleiotropic genes tend to be evolutionarily conserved and essential for normal development.

Similar content being viewed by others

References

  1. Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Wallace, A. The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  3. Galis, F. & Metz, J. A. Testing the vulnerability of the phylotypic stage: on modularity and evolutionary conservation. J. Exp. Zool. 291, 195–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Irie, N. & Kuratani, S. The developmental hourglass model: a predictor of the basic body plan? Development 141, 4649–4655 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S. & Robinson-Rechavi, M. The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLoS Genet. 9, e1003476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kalinka, A. T. & Tomancak, P. The evolution of early animal embryos: conservation or divergence? Trends Ecol. Evol. 27, 385–393 (2012).

    Article  PubMed  Google Scholar 

  7. Duboule, D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev. Suppl. 135–142 (1994).

  8. Sander, K. Specification of the basic body pattern in insect embryogenesis. Adv. Insect Physiol. 12, 125–238 (1976).

    Article  Google Scholar 

  9. Raff, A. The Shape of Life: Genes, Development, and the Evolution of Animal Form (Univ. of Chicago Press, Chicago, 1996).

    Book  Google Scholar 

  10. Richardson, M. K., Minelli, A., Coates, M. & Hanken, J. Phylotypic stage theory. Trends Ecol. Evol. 13, 158 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hazkani-Covo, E., Wool, D. & Graur, D. In search of the vertebrate phylotypic stage: a molecular examination of the developmental hourglass model and von Baer’s third law. J. Exp. Zool. B Mol. 304, 150–158 (2005).

    Article  PubMed  Google Scholar 

  12. Irie, N. & Sehara-Fujisawa, A. The vertebrate phylotypic stage and an early bilaterian-related stage in mouse embryogenesis defined by genomic information. BMC Biol. 5, 1 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Domazet-Loso, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kalinka, A. T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Quint, M. et al. A transcriptomic hourglass in plant embryogenesis. Nature 490, 98–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Levin, M., Hashimshony, T., Wagner, F. & Yanai, I. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev. Cell 22, 1101–1108 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Wang, Z. et al. The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan. Nat. Genet. 45, 701–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cheng, X., Hui, J. H., Lee, Y. Y., Wan Law, P. T. & Kwan, H. S. A “developmental hourglass” in fungi. Mol. Biol. Evol. 32, 1556–1566 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Xu, F. et al. High expression of new genes in trochophore enlightening the ontogeny and evolution of trochozoans. Sci. Rep. 6, 34664 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levin, M. et al. The mid-developmental transition and the evolution of animal body plans. Nature 531, 637–641 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Irie, N. Remaining questions related to the hourglass model in vertebrate evolution. Curr. Opin. Genet. Dev. 45, 103–107 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Chiba, S., Sasaki, A., Nakayama, A., Takamura, K. & Satoh, N. Development of Ciona intestinalis juveniles (through 2nd ascidian stage). Zool. Sci. 21, 285–298 (2004).

    Article  PubMed  Google Scholar 

  24. Hotta, K. et al. A web-based interactive developmental table for the ascidian Ciona intestinalis, including 3D real-image embryo reconstructions: I. From fertilized egg to hatching larva. Dev. Dynam. 236, 1790–1805 (2007).

    Article  PubMed  Google Scholar 

  25. Holland, L. Z. Genomics, evolution and development of amphioxus and tunicates: the Goldilocks principle. J. Exp. Zool. B 324, 342–352 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Janvier, P. Facts and fancies about early fossil chordates and vertebrates. Nature 520, 483–489 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Albalat, R. & Canestro, C. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Yanai, I., Peshkin, L., Jorgensen, P. & Kirschner, M. W. Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev. Cell 20, 483–496 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Benton, J. M. Vertebrate Palaeontology. 4th edn (Wiley-Blackwell, Hoboken, NJ, 2014).

    Google Scholar 

  30. Roux, J., Rosikiewicz, M. & Robinson-Rechavi, M. What to compare and how: comparative transcriptomics for Evo-Devo. J. Exp. Zool. B 324, 372–382 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jeffery, J. E., Bininda-Emonds, O. R., Coates, M. I. & Richardson, M. K. Analyzing evolutionary patterns in amniote embryonic development. Evol. Dev. 4, 292–302 (2002).

    Article  PubMed  Google Scholar 

  32. Galis, F. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J. Exp. Zool. 285, 19–26 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Duboule, D. & Wilkins, A. S. The evolution of ‘bricolage’. Trends Genet. 14, 54–59 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Pavlicev, M. & Cheverud, J. M. Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu. Rev. Ecol. Evol. Syst. 46, 413–434 (2015).

    Article  Google Scholar 

  35. Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12, 204–213 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Riedl, R. Order in Living Organisms: a Systems Analysis of Evolution (Wiley, Hoboken, NJ, 1978).

    Google Scholar 

  37. Hong, J. W., Hendrix, D. A. & Levine, M. S. Shadow enhancers as a source of evolutionary novelty. Science 321, 1314 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perry, M. W., Boettiger, A. N. & Levine, M. Multiple enhancers ensure precision of gap gene-expression patterns in the Drosophila embryo. Proc. Natl Acad. Sci. USA 108, 13570–13575 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papakostas, S. et al. Gene pleiotropy constrains gene expression changes in fish adapted to different thermal conditions. Nat. Commun. 5, 4071 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Zalts, H. & Yanai, I. Developmental constraints shape the evolution of the nematode mid-developmental transition. Nat. Ecol. Evol. 1, 0113 (2017).

  41. Seki, R. et al. Functional roles of Aves class-specific cis-regulatory elements on macroevolution of bird-specific features. Nat. Commun. 8, 14229 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carroll, S. B., Grenier, J. K. & Weatherbee, S. D. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design 9th edn (Blackwell, Malden, MA, 2005

    Google Scholar 

  44. Pavlicev, M. & Wagner, G. P. A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol. Evol. 27, 316–322 (2012).

    Article  PubMed  Google Scholar 

  45. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon, Oxford, 1930).

    Book  Google Scholar 

  46. Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Satoh, N., Rokhsar, D. & Nishikawa, T. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sasagawa, Y. et al. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 14, R31 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Robinson, M. D. & Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Lechner, M. et al. Proteinortho: detection of (co-)orthologs in large-scale analysis. BMC Bioinformatics 12, 124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, F., Mackey, A. J., Vermunt, J. K. & Roos, D. S. Assessing performance of orthology detection strategies applied to eukaryotic genomes. PLoS ONE 2, e383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tena, J. J. et al. Comparative epigenomics in distantly related teleost species identifies conserved cis-regulatory nodes active during the vertebrate phylotypic period. Genome Res. 24, 1075–1085 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hejnol, A. & Dunn, C. W. Animal evolution: are phyla real? Curr. Biol. 26, R424–R426 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Dunn, C. W., Zapata, F., Munro, C., Siebert, S. & Hejnol, A. Pairwise comparisons across species are problematic when analyzing funcional genomic data. Preprint at http://www.biorxiv.org/content/early/2017/02/09/107177 (2017).

  59. Li, J. J., Huang, H., Bickel, P. J. & Brenner, S. E. Comparison of D. melanogaster and C. elegans developmental stages, tissues, and cells by modENCODE RNA-seq data. Genome Res. 24, 1086–1101 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucl. Acids Res. 43, D1049–D1056 (2015).

    Article  CAS  Google Scholar 

  61. Ashburner, M. et al. Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Georgi, B., Voight, B. F. & Bucan, M. From mouse to human: evolutionary genomics analysis of human orthologs of essential genes. PLoS Genet. 9, e1003484 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The EXPANDE (EXpression Profiling AloNg Development and Evolution) project and N.I. was supported in part by Grants in Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (15H05603, 22128003, 24570243, 3902 and 17H06387) and the Platform for Dynamic Approaches to Living System from the Ministry of Education, Culture, Sports, Science and Technology, Japan. T.G.K. was supported in part by KAKENHI 16H04724. The research performed by J.-K.Y. was supported by grants from Academia Sinica and the Ministry of Science and Technology, Taiwan (AS-98-CDA-L06, 102-2311-B-001-011-MY3 and 104-2923-B-001-002-MY3). We thank K. Yamanaka for help collecting the embryos (mouse, chicken, turtle, frog and zebrafish), extracting RNAs and sample preparation using Quartz-Seq for early embryos from mice. We thank C. Tanegashima, K. Itomi, O. Nishimura and S. Kuraku for help constructing libraries, sequencing samples and quality checking some of the RNA-seq data. We thank F. Castellan for critically reading the manuscript. We thank Y. Uchida for providing high-resolution images of zebrafish embryos. We thank G. Renaud and J. Kelso for providing the robust demultiplexing method for analysing the ascidian sequencing data.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

N.I., P.K. and S.K. conceived the study. S.F., K.S., T.-M.L., J.-K.Y., T.G.K., Y.S. and N.I. collected the samples. H.H., S.G., S.F., Y.S., T.G.K. and N.I. conducted the experiments needed for RNA-seq. F.L., S.L., G.Z. and H.H. made new gene sets in X. laevis and B. floridae. H.H., S.G., M.U., P.K., M.I. and N.I. analysed the data. N.I., J.-K.Y., M.U., T.G.K. and S.K. edited the paper. N.I. and P.K. supervised the project.

Corresponding author

Correspondence to Naoki Irie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A list of the members of the EXPANDE Consortium and their and affiliations appears in the Supplementary Information.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Notes, Supplementary Figures 1–13, Supplementary Tables 1–16

Supplementary Data

FPKM-based normalized gene expression profiles at each developmental stage for each species

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Uesaka, M., Guo, S. et al. Constrained vertebrate evolution by pleiotropic genes. Nat Ecol Evol 1, 1722–1730 (2017). https://doi.org/10.1038/s41559-017-0318-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0318-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing