Demographically framing trade-offs between sensitivity and specificity illuminates selection on immunity

Abstract

A fundamental challenge faced by the immune system is to discriminate contexts meriting activation from contexts in which activation would be harmful. Selection pressures on this ability are likely to be acute: the penalty of mis-identification of pathogens (therefore failure to attack them) is mortality or morbidity linked to infectious disease, which could reduce fitness by reducing lifespan or fertility; the penalty associated with mis-identification of host (therefore self-attack) is immunopathology, whose fitness costs can also be extreme. Here we use classic epidemiological tools to frame this trade-off between sensitivity and specificity of immune activation, exploring implications for evolution of immune discrimination. We capture the expected increase in the evolutionarily optimal sensitivity under higher pathogen mortality risk, and a decrease in sensitivity with increased immunopathology mortality risk; but a number of non-intuitive predictions also emerge. All else being equal, optimal sensitivity decreases with increasing lifespan; and, where sensitivity can vary over age, decreases at late ages not solely attributable to immunosenescence are predicted. These results both enrich and challenge previous predictions concerning the relationship between life expectancy and optimal evolved defenses, highlighting the need to account for epidemiological setting, lifestage-specific immune priorities, and immune discrimination in future investigations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Sensitivity and specificity framed as an ROC.
Fig. 2: Age profiles of infectious disease and the trade-off between sensitivity and specificity.
Fig. 3: The optimal age trajectory of sensitivity across the life course.

References

  1. 1.

    Land, W. G. How evolution tells us to induce allotolerance. Exp. Clin. Transplant. 13, 46–54 (2015).

    PubMed  Google Scholar 

  2. 2.

    Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Rathinam, V. A. K., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–342 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Crișan, T. O., Netea, M. G. & Joosten, L. A. Innate immune memory: implications for host responses to damage‐associated molecular patterns. Eur. J. Immunol. 46, 817–828 (2016).

    Article  Google Scholar 

  5. 5.

    Pradeu, T. & Cooper, E. L. The danger theory: 20 years later. Front. Immunol. 3, 287 (2012).

    Article  Google Scholar 

  6. 6.

    Tate, A. T. & Graham, A. L. Dynamic patterns of parasitism and immunity across host development influence optimal strategies of resource allocation. Am. Nat. 186, 495–512 (2015).

    Article  Google Scholar 

  7. 7.

    Graham, A. L., Allen, J. E. & Read, A. F. Evolutionary causes and consequences of immunopathology. Annu. Rev. Ecol. Evol. Syst. 36, 373–397 (2005).

    Article  Google Scholar 

  8. 8.

    Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: tolerance and resistance to parasites in animals. Phil. Trans. R. Soc. B 364, 37–49 (2009).

    Article  Google Scholar 

  9. 9.

    Cressler, C. E., Graham, A. L. & Day, T. Evolution of hosts paying manifold costs of defence. Proc. R. Soc. B 282, 20150065 (2015).

    Article  Google Scholar 

  10. 10.

    Frank, S. A. Immune response to parasitic attack: evolution of a pulsed character. J. Theor. Biol. 219, 281–290 (2002).

    CAS  Article  Google Scholar 

  11. 11.

    Hurford, A. & Day, T. Immune evasion and the evolution of molecular mimicry in parasites. Evolution 67, 2889–2904 (2013).

    PubMed  Google Scholar 

  12. 12.

    Ang, C. W., Jacobs, B. C. & Laman, J. D. The Guillain–Barré syndrome: a true case of molecular mimicry. Trends Immunol. 25, 61–66 (2004).

    CAS  Article  Google Scholar 

  13. 13.

    Lazzaro, B. P. & Rolff, J. Danger, microbes, and homeostasis. Science 332, 43–44 (2011).

    Article  Google Scholar 

  14. 14.

    Perelson, A. S. & Oster, G. F. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self–non-self discrimination. J. Theor. Biol. 81, 645–670 (1979).

    CAS  Article  Google Scholar 

  15. 15.

    Nesse, R. M. Natural selection and the regulation of defenses: a signal detection analysis of the smoke detector principle. Evol. Hum. Behav. 26, 88–105 (2005).

    Article  Google Scholar 

  16. 16.

    Simmen, M. W. Genome-scale relationships between cytosine methylation and dinucleotide abundances in animals. Genomics 92, 33–40 (2008).

    CAS  Article  Google Scholar 

  17. 17.

    Rima, B. K. & McFerran, N. V. Dinucleotide and stop codon frequencies in single-stranded RNA viruses. J. Gen. Virol. 78, 2859–2870 (1997).

    CAS  Article  Google Scholar 

  18. 18.

    Greenbaum, B. D., Levine, A. J., Bhanot, G. & Rabadan, R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathog. 4, e1000079 (2008).

    Article  Google Scholar 

  19. 19.

    Boots, M., Donnelly, R. & White, A. Optimal immune defence in the light of variation in lifespan. Parasite Immunol. 35, 331–338 (2013).

    CAS  PubMed  Google Scholar 

  20. 20.

    Mayer, A., Thierry, M., Rivoire, O. & Walczak, A. M. Diversity of immune strategies explained by adaptation to pathogen statistics. Proc. Natl Acad. Sci. USA 113, 8630–8635 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).

    CAS  Article  Google Scholar 

  22. 22.

    Baudisch, A. Hamilton’s indicators of the force of selection. Proc. Natl Acad. Sci. USA 102, 8263–8268 (2005).

    CAS  Article  Google Scholar 

  23. 23.

    Anderson, R. M. & May, R. M. Infectious Diseases of Humans. (Oxford Univ. Press, Oxford, 1991).

    Google Scholar 

  24. 24.

    Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PloS Med. 5, e74 (2008).

    Article  Google Scholar 

  25. 25.

    Shaw, A. C., Goldstein, D. R. & Montgomery, R. R. Age-dependent dysregulation of innate immunity. Nat. Rev. Immunol. 13, 875–887 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Khan, I., Agashe, D. & Rolff, J. Early-life inflammation, immune response and ageing. Proc. R. Soc. B 284, 20170125 (2017).

    Article  Google Scholar 

  27. 27.

    Urban, M. C., Bürger, R. & Bolnick, D. I. Asymmetric selection and the evolution of extraordinary defences. Nat. Commun. 4, 2085 (2013).

    Article  Google Scholar 

  28. 28.

    Katzourakis, A. et al. Larger mammalian body size leads to lower retroviral activity. PLoS Pathog. 10, e1004214 (2014).

    Article  Google Scholar 

  29. 29.

    Morran, L. T., Schmidt, O. G., Gelarden, I. A., Parrish, R. C. II & Lively, C. M. Running with the Red Queen: host–parasite coevolution selects for biparental sex. Science 333, 216–218 (2011).

    CAS  Article  Google Scholar 

  30. 30.

    Gaunt, E. et al. Elevation of CpG frequencies in influenza A genome attenuates pathogenicity but enhances host response to infection. eLife 5, e12735 (2016).

    Article  Google Scholar 

  31. 31.

    Martin, L. B. II, Weil, Z. M. & Nelson, R. J. Immune defense and reproductive pace of life in Peromyscus mice. Ecology 88, 2516–2528 (2007).

    Article  Google Scholar 

  32. 32.

    Pohar, J. et al. Species-specific minimal sequence motif for oligodeoxyribonucleotides activating mouse TLR9. J. Immunol. 195, 4396–4405 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Pohar, J., Kužnik Krajnik, A., Jerala, R. & Benčina, M. Minimal sequence requirements for oligodeoxyribonucleotides activating human TLR9. J. Immunol. 194, 3901–3908 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Renshaw, M. et al. Cutting edge: impaired Toll-like receptor expression and function in aging. J. Immunol. 169, 4697–4701 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. R. Soc. B 282, 20143085 (2015).

    Article  Google Scholar 

  36. 36.

    de Jong, M. D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  Google Scholar 

  37. 37.

    Long, G. H. & Graham, A. L. Consequences of immunopathology for pathogen virulence evolution and public health: malaria as a case study. Evol. Appl. 4, 278–291 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

A.L.G. was supported by an ETH Zürich Gastprofessorship.

Author information

Affiliations

Authors

Contributions

C.J.E.M. conceived the idea; A.L.G., C.J.E.M. and A.T.T. wrote the draft.

Corresponding author

Correspondence to C. Jessica E. Metcalf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–4

Supplementary Code

EvolDiscrim.R—Annotated R code needed to repeat the analysis

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Metcalf, C.J.E., Tate, A.T. & Graham, A.L. Demographically framing trade-offs between sensitivity and specificity illuminates selection on immunity. Nat Ecol Evol 1, 1766–1772 (2017). https://doi.org/10.1038/s41559-017-0315-3

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing