Metals promote sequences of the reverse Krebs cycle

Abstract

The reverse tricarboxylic acid (rTCA) cycle (also known as the reverse Krebs cycle) is a central anabolic biochemical pathway whose origins are proposed to trace back to geochemistry, long before the advent of enzymes, RNA or cells, and whose imprint remains intimately embedded in the structure of core metabolism. If it existed, a primordial version of the rTCA cycle would necessarily have been catalysed by naturally occurring minerals at the earliest stage of the transition from geochemistry to biochemistry. Here, we report non-enzymatic promotion of multiple reactions of the rTCA cycle in consecutive sequence, whereby 6 of its 11 reactions were promoted by Zn2+, Cr3+ and Fe0 in an acidic aqueous solution. Two distinct three-reaction sequences were achieved under a common set of conditions. Selectivity was observed for reduction reactions producing rTCA cycle intermediates compared with those leading off-cycle. Reductive amination of ketoacids to furnish amino acids was observed under similar conditions. The emerging reaction network supports the feasibility of primitive anabolism in an acidic, metal-rich reducing environment.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Hypothetical proto-anabolic network consisting of the AcCoA pathway (CO2 to AcCoA) and the rTCA cycle.
Fig. 2: Plausible chemical mechanisms.
Fig. 3: Prebiotic reaction network.

References

  1. 1.

    Ruiz-Mirazo, K., Briones, C. & de la Escosura, A. Prebiotic systems chemistry: new perspectives for the origins of life. Chem. Rev. 114, 285–366 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Peretó, J. Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chem. Soc. Rev. 41, 5394–5403 (2012).

    Article  Google Scholar 

  3. 3.

    Sutherland, J. D. Studies on the origin of life—the end of the beginning. Nat. Rev. Chem. 1, 0012 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Morowitz, H. J. Beginnings of Cellular Life: Metabolism Recapitulates Biogenesis (Yale Univ. Press, London, 1992).

    Google Scholar 

  5. 5.

    Wächtershäuser, G. Before enzymes and templates: theory of surface metabolism. Microbiol. Rev. 52, 452–484 (1988).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Martin, W. & Russell, M. J. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887–1926 (2007).

    CAS  Article  Google Scholar 

  7. 7.

    Peretó, J. G., Velasco, A. M., Becerra, A. & Lazcano, A. Comparative biochemistry of CO2 fixation and the evolution of autotrophy. Int. Microbiol. 2, 3–10 (1999).

    PubMed  Google Scholar 

  8. 8.

    Lane, N., Allen, J. F. & Martin, W. How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32, 271–280 (2010).

    CAS  Article  Google Scholar 

  9. 9.

    Russell, M. J., Nitschke, W. & Branscomb, E. The inevitable journey to being. Phil. Trans. R. Soc. B 368, 20120254 (2013).

    Article  Google Scholar 

  10. 10.

    Sutherland, J. D. The origin of life—out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2015).

    Article  Google Scholar 

  11. 11.

    Keller, M. A., Turchyn, A. V. & Ralser, M. Non‐enzymatic glycolysis and pentose phosphate pathway‐like reactions in a plausible Archean ocean. Mol. Syst. Biol. 10, 725 (2014).

    Article  Google Scholar 

  12. 12.

    Keller, M. A. et al. Conditional iron and pH-dependent activity of a non-enzymatic glycolysis and pentose phosphate pathway. Sci. Advances 2, e1501235 (2016).

    Article  Google Scholar 

  13. 13.

    Keller, M. A., Kampjut, D., Harrison, S. A. & Ralser, M. Sulfate radicals enable a non-enzymatic Krebs cycle precursor. Nat. Ecol. Evol. 1, 0083 (2017).

    Article  Google Scholar 

  14. 14.

    Berg, I. A. et al. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 8, 447–460 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Ljundahl, L. G., Irion, E. & Wood, H. G. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and co-(methyl)-5-methoxy-benzimidizolycobamide as intermediates with Clostridium thermoaceticum. Biochemistry 4, 2771–2779 (1965).

    Article  Google Scholar 

  16. 16.

    Evans, M. C. W., Buchanan, B. B. & Arnon, D. I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl Acad. Sci. USA 55, 928–934 (1966).

    CAS  Article  Google Scholar 

  17. 17.

    Morowitz, H. J., Kostelnik, J. D., Yang, J. & Cody, G. D. The origin of intermediary metabolism. Proc. Natl Acad. Sci. USA 97, 7704–7708 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Smith, E. & Morowitz, H. J. Universality in intermediary metabolism. Proc. Natl Acad. Sci. USA 101, 13168–13173 (2004).

    CAS  Article  Google Scholar 

  19. 19.

    Smith, E. & Morowitz, H. J. The Origin and Nature of Life on Earth: The Emergence of the Fourth Geosphere (Cambridge Univ. Press, Cambridge, 2016).

    Google Scholar 

  20. 20.

    Braakman, R. & Smith, E. The emergence and early evolution of biological carbon-fixation. PLoS Comp. Biol. 8, e1002455 (2012).

    CAS  Article  Google Scholar 

  21. 21.

    Camprubi, E., Jordan, S. F., Vasiliadou, R. & Lane, N. Iron catalysis at the origin of life. IUBMB Life 69, 373–381 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Russell, M. J., Hall, A. J. & Mellersh, A. R. in Natural and Laboratory Simulated Thermal Geochemical Processes 325–388 (Springer Netherlands, Dordrecht, 2003).

  23. 23.

    Reysenbach, A.-L. & Shock, E. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296, 1077–1082 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Weiss, M. C. et al. The physiology and habitat of the last universal common ancestor. Nat. Microbiol. 1, 16116 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Plasson, R., Brandenburg, A., Jullien, L. & Bersini, H. Autocatalyses. J. Phys. Chem. A 115, 8073–8085 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Orgel, L. E. The implausibility of metabolic cycles on the prebiotic Earth. PLoS Biol. 6, e18 (2008).

    Article  Google Scholar 

  27. 27.

    He, C., Tian, G., Liu, Z. & Feng, S. A mild hydrothermal route to fix carbon dioxide to simple carboxylic acids. Org. Lett. 12, 649–651 (2010).

    CAS  Article  Google Scholar 

  28. 28.

    Roldan, A. et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun. 51, 7501–7504 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Herschy, B. et al. An origin-of-life reactor to simulate alkaline hydrothermal vents. J. Mol. Evol. 79, 213–227 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Huber, C. & Wächtershauser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276, 245–247 (1997).

    CAS  Article  Google Scholar 

  31. 31.

    Cody, G. D. et al. Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O-(±FeS)−(±NiS). Geochim. Cosmochim. Acta 65, 3557–3576 (2001).

    CAS  Article  Google Scholar 

  32. 32.

    Zhang, X. V. & Martin, S. T. Driving parts of Krebs cycle in reverse through mineral photochemistry. J. Am. Chem. Soc. 128, 16032–16033 (2006).

    CAS  Article  Google Scholar 

  33. 33.

    Cody, G. D. et al. Primordial carbonylated iron-sulfur compounds and the synthesis of pyruvate. Science 289, 1337–1340 (2000).

    CAS  Article  Google Scholar 

  34. 34.

    Morowitz, H. J., Srinivasan, V. & Smith, E. Ligand field theory and the origin of life as an emergent feature of the periodic table of elements. Biol. Bull. 219, 1–6 (2010).

    CAS  Article  Google Scholar 

  35. 35.

    Ross, D. S. The viability of a nonenzymatic reductive citric acid cycle—kinetics and thermochemistry. Orig. Life Evol. Biosph. 37, 61–65 (2007).

    CAS  Article  Google Scholar 

  36. 36.

    Flint, D. H. & Allen, R. M. Iron−sulfur proteins with nonredox functions. Chem. Rev. 96, 2315–2334 (1996).

    CAS  Article  Google Scholar 

  37. 37.

    Lipshutz, B. H. et al. TPGS-750-M: a second-generation amphiphile for metal-catalyzed cross-couplings in water at room temperature. J. Org. Chem. 76, 4379–4391 (2011).

    CAS  Google Scholar 

  38. 38.

    Olson, M. V. & Taube, H. Hydration and isomerization of coordinated maleate. J. Am. Chem. Soc. 92, 3236–3237 (1970).

    CAS  Article  Google Scholar 

  39. 39.

    Nicolet, Y. & Fontecilla-Camps, J. C. in Bioinspired Catalysis 21–48 (Wiley, Weinheim, Germany, 2014).

  40. 40.

    Huber, C. & Wächtershäuser, G. Primordial reductive amination revisited. Tetrahedron Lett. 44, 1695–1697 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, W. et al. Photocatalytic reversible amination of α-keto acids on a ZnS surface: implications for the prebiotic metabolism. Chem. Commun. 48, 2146–2148 (2012).

    CAS  Article  Google Scholar 

  42. 42.

    Dietl, A. et al. The inner workings of the hydrazine synthase multiprotein complex. Nature 527, 394–297 (2015).

    CAS  Article  Google Scholar 

  43. 43.

    Barney, B. M. et al. Trapping a hydrazine reduction intermediate on the nitrogenase active site. Biochemistry 44, 8030–8037 (2005).

    CAS  Article  Google Scholar 

  44. 44.

    Zubarev, D. Y., Rappoport, D. & Aspuru-Guzik, A. Uncertainty of prebiotic scenarios: the case of the non-enzymatic reverse tricarboxylic acid cycle. Sci. Rep. 5, 8009 (2015).

    Article  Google Scholar 

  45. 45.

    Zerkle, A. L., House, C. H. & Brantley, S. L. Biogeochemical signatures through time as inferred from whole microbial genomes. Am. J. Sci. 305, 467–502 (2005).

    CAS  Article  Google Scholar 

  46. 46.

    Mulkidjanian, A. Y. & Galperin, M. Y. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Biol. Direct 4, 27 (2009).

    Article  Google Scholar 

  47. 47.

    Martin, W., Baross, J., Kelley, D. & Russell, M. J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805–814 (2008).

    CAS  Article  Google Scholar 

  48. 48.

    Ross, D. S. & Deamer, D. Dry/wet cycling and the thermodynamics and kinetics of prebiotic polymer synthesis. Life 6, 28 (2016).

    Article  Google Scholar 

  49. 49.

    Bernhardt, H. S. & Tate, W. P. Primordial soup or vinaigrette: did the RNA world evolve at acidic pH? Biol. Direct 7, 4 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Nakamura, R. et al. Electrical current generation across a black smoker chimney. Angew. Chem. Int. Ed. 49, 7692–7694 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement 639170). Further funding was provided by a grant from LabEx ‘Chemistry of Complex Systems’. We thank the ELSI Origins Network, which is supported by a grant from the John Templeton Foundation provided through the Earth-Life Science Institute of the Tokyo Institute of Technology. We thank E. Smith for stimulating discussions. This paper is dedicated to the memory of H. J. Morowitz.

Author information

Affiliations

Authors

Contributions

J.M. supervised the research and the other authors performed the experiments. All authors contributed intellectually throughout the study. J.M. wrote the paper and K.B.M. assembled the Supplementary Information, incorporating data from S.J.V., E.C.-B. and L.L.-K. Important preliminary experiments were carried out by G.L.

Corresponding author

Correspondence to Joseph Moran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Figures 1–69, Supplementary Tables 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muchowska, K.B., Varma, S.J., Chevallot-Beroux, E. et al. Metals promote sequences of the reverse Krebs cycle. Nat Ecol Evol 1, 1716–1721 (2017). https://doi.org/10.1038/s41559-017-0311-7

Download citation

Further reading