Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transgenerational selection driven by divergent ecological impacts of hybridizing lineages

Abstract

Dynamic interactions between ecological conditions and the phenotypic composition of populations likely play an important role in evolution, but the direction and strength of these feedbacks remain difficult to characterize. We investigated these dynamics across two generations of threespine sticklebacks from two evolutionary lineages undergoing secondary contact and hybridization. Independently manipulating the density and lineage of adults in experimental mesocosms led to contrasting ecosystem conditions with strong effects on total survival in a subsequent generation of juveniles. Ecosystem modifications by adults also varied the strength of selection on competing hybrid and non-hybrid juveniles. This variation in selection indicated (1) a negative eco-evolutionary feedback driven by lineage-specific resource depletion and dependence and (2) a large performance advantage of hybrid juveniles in depleted environments. This work illustrates the importance of interactions between phenotype, population density and the environment in shaping selection and evolutionary trajectories, especially in the context of range expansion with secondary contact and hybridization.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location and phenotypic divergence of two major evolutionary lineages of threespine sticklebacks in Switzerland.
Fig. 2: Effects of adult fish on experimental ecosystems, including prey availability, habitat structure and GPP.
Fig. 3: Juvenile survival and condition.
Fig. 4: Determinants of selection on juveniles.
Fig. 5: Stable isotope signatures of juvenile fish and potential prey.

Similar content being viewed by others

References

  1. Reznick, D. Hard and soft selection revisited: how evolution by natural selection works in the real world. J. Hered. 107, 3–14 (2015).

    Article  PubMed  Google Scholar 

  2. Pelletier, F., Garant, D. & Hendry, A. P. Eco-evolutionary dynamics. Phil. Trans. R. Soc. Lond. B. 364, 1483–1489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matthews, B. et al. Under niche construction: an operational bridge between ecology, evolution, and ecosystem science. Ecol. Monogr. 84, 245–263 (2014).

    Article  Google Scholar 

  4. Hendry, A. P. Eco-evolutionary Dynamics (Princeton Univ. Press, Princeton, NJ, 2016).

    Book  Google Scholar 

  5. McPeek, M. A. The ecological dynamics of natural selection: traits and the coevolution of community structure. Am. Nat. 189, E91–E117 (2017).

    Article  PubMed  Google Scholar 

  6. Harmon, L. J. et al. Evolutionary diversification in stickleback affects ecosystem functioning. Nature 458, 1167–1170 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Des Roches, S., Shurin, J. B., Schluter, D. & Harmon, L. J. Ecological and evolutionary effects of stickleback on community structure. PLoS ONE 8, e59644 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bassar, R. D. et al. Local adaptation in Trinidadian guppies alters ecosystem processes. Proc. Natl Acad. Sci. USA 107, 3616–3621 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lundsgaard-Hansen, B., Matthews, B. & Seehausen, O. Ecological speciation and phenotypic plasticity affect ecosystems. Ecology 95, 2723–2735 (2014).

    Article  Google Scholar 

  10. Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N. & Travis, J. Experimental evidence for density-dependent regulation and selection on Trinidadian guppy life histories. Am. Nat. 181, 25–38 (2013).

    Article  PubMed  Google Scholar 

  11. Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Palkovacs, E. P., Mandeville, E. G. & Post, D. M. Contemporary trait change in a classic ecological experiment: rapid decrease in alewife gill‐raker spacing following introduction to an inland lake. Freshwater Biol. 59, 1897–1901 (2014).

    Article  Google Scholar 

  13. Fussmann, G. F., Loreau, M. & Abrams, P. A. Eco-evolutionary dynamics of communities and ecosystems. Funct. Ecol. 21, 465–477 (2007).

    Article  Google Scholar 

  14. Becks, L., Ellner, S. P., Jones, L. E. & Hairston, N. G. The functional genomics of an eco-evolutionary feedback loop: linking gene expression, trait evolution, and community dynamics. Ecol. Lett. 15, 492–501 (2012).

    Article  PubMed  Google Scholar 

  15. Ferriere, R. & Legendre, S. Eco-evolutionary feedbacks, adaptive dynamics and evolutionary rescue theory. Phil. Trans. R. Soc. Lond. B. 368, 20120081 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Abrams, P. A. The eco-evolutionary responses of a generalist consumer to resource competition. Evolution 66, 3130–3143 (2012).

    Article  PubMed  Google Scholar 

  17. Cortez, M. H. How the magnitude of prey genetic variation alters predator–prey eco-evolutionary dynamics. Am. Nat. 188, 329–341 (2016).

    Article  PubMed  Google Scholar 

  18. Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Article  Google Scholar 

  19. Lankau, R. A. & Strauss, S. Y. Community complexity drives patterns of natural selection on a chemical defense of Brassica nigra. Am. Nat. 171, 150–161 (2008).

    Article  PubMed  Google Scholar 

  20. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).

    Article  PubMed  Google Scholar 

  21. Cameron, T. C., Plaistow, S., Mugabo, M., Piertney, S. B. & Benton, T. G. Chapter five—eco-evolutionary dynamics: experiments in a model system. Adv. Ecol. Res. 50, 171–206 (2014).

    Article  Google Scholar 

  22. Turcotte, M. M., Reznick, D. N. & Hare, J. D. Experimental test of an eco-evolutionary dynamic feedback loop between evolution and population density in the green peach aphid. Am. Nat. 181, S46–S57 (2013).

    Article  PubMed  Google Scholar 

  23. Jones, A. W. & Post, D. M. Consumer interaction strength may limit the diversifying effect of intraspecific competition: a test in alewife (Alosa pseudoharengus). Am. Nat. 181, 815–826 (2013).

    Article  PubMed  Google Scholar 

  24. Svanbäck, R. & Bolnick, D. I. Intraspecific competition drives increased resource use diversity within a natural population. Proc. R. Soc. Lond. B 274, 839–844 (2007).

    Article  Google Scholar 

  25. Schluter, D. Experimental evidence that competition promotes divergence in adaptive radiation. Science 266, 798–801 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Rundle, H. D., Vamosi, S. M. & Schluter, D. Experimental test of predation’s effect on divergent selection during character displacement in sticklebacks. Proc. Natl Acad. Sci. USA 100, 14943–14948 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lucek, K., Roy, D., Bezault, E., Sivasundar, A. & Seehausen, O. Hybridization between distant lineages increases adaptive variation during a biological invasion: stickleback in Switzerland. Mol. Ecol. 19, 3995–4011 (2010).

    Article  PubMed  Google Scholar 

  28. Berner, D., Roesti, M., Hendry, A. P. & Salzburger, W. Constraints on speciation suggested by comparing lake-stream stickleback divergence across two continents. Mol. Ecol. 19, 4963–4978 (2010).

    Article  PubMed  Google Scholar 

  29. Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric Swiss stickleback. J. Evol. Biol. 26, 2691–2709 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Lucek, K., Sivasundar, A., Roy, D. & Seehausen, O. Dryad Data from: Repeated and predictable patterns of ecotypic differentiation during a biological invasion: lake–stream divergence in parapatric Swiss stickleback. (Dryad Digital Repository, 2013); http://datadryad.org/resource/doi:10.5061/dryad.0nh60.

  31. Berner, D., Moser, D., Roesti, M., Buescher, H. & Salzburger, W. Genetic architechture of skeletal evolution in European lake and stream stickleback. Evolution 68, 1792–1805 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Schluter, D. Adaptive radiation in sticklebacks: trade-offs in feeding performance and growth. Ecology 76, 82–90 (1995).

    Article  Google Scholar 

  33. McGee, M. D., Schluter, D. & Wainwright, P. C. Functional basis of ecological divergence in sympatric stickleback. BMC Evol. Biol. 13, 1–10 (2013).

    Article  Google Scholar 

  34. Roy, D., Lucek, K., Walter, R. P. & Seehausen, O. Hybrid ‘superswarm’ leads to rapid divergence and establishment of populations during a biological invasion. Mol. Ecol. 24, 5394–5411 (2015).

    Article  PubMed  Google Scholar 

  35. Canestrelli, D. et al. The tangled evolutionary legacies of range expansion and hybridization. Trends Ecol. Evol. 31, 677–688 (2016).

    Article  PubMed  Google Scholar 

  36. Nosil, P. Ecological Speciation (Oxford Univ. Press, Oxford, 2012).

    Book  Google Scholar 

  37. Hatfield, T. & Schluter, D. Ecological speciation in sticklebacks: environment-dependent hybrid fitness. Evolution 53, 866–873 (1999).

    Article  PubMed  Google Scholar 

  38. Gill, A. B. & Hart, P. J. B. Feeding behaviour and prey choice of the threespine stickleback: the interacting effects of prey size, fish size and stomach fullness. Anim. Behav. 47, 921–932 (1994).

    Article  Google Scholar 

  39. Gergs, R. & Rothhaupt, K. O. Invasive species as driving factors for the structure of benthic communities in Lake Constance, Germany. Hydrobiologia 746, 245–254 (2015).

    Article  CAS  Google Scholar 

  40. Janzen, D. H. Herbivores and number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).

    Article  Google Scholar 

  41. Vamosi, S. M. & Schluter, D. Impacts of trout predation on fitness of sympatric sticklebacks and their hybrids. Proc. R. Soc. Lond. B 269, 923–930 (2002).

    Article  Google Scholar 

  42. Arnegard, M. E. et al. Genetics of ecological divergence during speciation. Nature 511, 307–311 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor, E. B. et al. Speciation in reverse: morphological and genetic evidence of the collapse of a three-spined stickleback (Gasterosteus aculeatus) species pair. Mol. Ecol. 15, 343–355 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Rieseberg, L. H. et al. Hybridization and the colonization of novel habitats by annual sunflowers. Genetica 129, 149–165 (2007).

    Article  PubMed  Google Scholar 

  45. Hochholdinger, F. & Hoecker, N. Towards the molecular basis of heterosis. Trends Plant Sci. 12, 427–432 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).

    Article  PubMed  Google Scholar 

  47. Blanchet, S., Bernatchez, L. & Dodson, J. J. Does interspecific competition influence relationships between heterozygosity and fitness-related behaviors in juvenile Atlantic salmon (Salmo salar)? Behav. Ecol. Sociobiol. 63, 605–615 (2009).

    Article  Google Scholar 

  48. Brock, P. M., Goodman, S. J., Hall, A. J., Cruz, M. & Acevedo-Whitehouse, K. Context-dependent associations between heterozygosity and immune variation in a wild carnivore. BMC Evol. Biol. 15, 242 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Domínguez, A. & Albornoz, J. Environment-dependent heterosis in Drosophila melanogaster. Genet. Sel. Evol. 19, 37–48 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Blum, A. Heterosis, stress, and the environment: a possible road map towards the general improvement of crop yield. J. Exp. Bot. 64, 4829–4837 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Anaya-Rojas, J. M. Host–Parasite Interactions and the Eco-Evolutionary Dynamics of Aquatic Ecosystems PhD thesis, Univ. Bern (2017).

  52. Lucek, K., Sivasundar, A., Kristjánsson, B., Skúlason, S. & Seehausen, O. Quick divergence but slow convergence during ecotype formation in lake and stream stickleback pairs of variable age. J. Evol. Biol. 27, 1878–1892 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Res. 10, 551–555 (2010).

    Article  Google Scholar 

  54. R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2012).

    Google Scholar 

  55. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. http://dx.doi.org/10.18637/jss.v067.i01/ (2015).

  56. Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, CA, 2011).

    Google Scholar 

  57. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, Berlin, 2002).

    Google Scholar 

  58. Schmid, D. About the Role of Resource Environment in the Population Divergence of the Lake Constance Threespine Stickleback MSc thesis, Univ. Zurich (2016).

Download references

Acknowledgements

We thank M. Lürig, G. Antoniazza, E. Birnstiel, L. Catalano, K. Müller, A. Taverna, E. Schäffer, F. Brunner, D. Hohmann and D. Steiner for major contributions to fish breeding and care, as well as experimental set-up, maintenance and sampling. We thank K. Lucek, S. Mwaiko and C. Schmid for assistance with microsatellite genotyping, and D. Marques and M. McGee for input on the study system and experimental design. S. Robert, P. Kathriner and B. Kienholz provided laboratory facilities and infrastructure support. We thank M. Rheinhof for access to sampling sites on Lake Constance.

Author information

Authors and Affiliations

Authors

Contributions

B.M., J.M.A.-R., O.S. and R.J.B. designed the core experiment. R.J.B. and J.M.A.-R. carried out the experiment. M.C.L. designed and carried out the isotopic analysis, and D.W.S. provided supplementary data on feeding efficiency. R.J.B. analysed the data and wrote the manuscript with substantial contributions and revisions from all authors.

Corresponding author

Correspondence to Rebecca J. Best.

Ethics declarations

Competing interests

The authors declare no competing finacial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1 and 2, Supplementary Tables 1–3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Best, R.J., Anaya-Rojas, J.M., Leal, M.C. et al. Transgenerational selection driven by divergent ecological impacts of hybridizing lineages. Nat Ecol Evol 1, 1757–1765 (2017). https://doi.org/10.1038/s41559-017-0308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0308-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing