Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil


The evolutionary events during the Ediacaran–Cambrian transition (~541 Myr ago) are unparalleled in Earth history. The fossil record suggests that most extant animal phyla appeared in a geologically brief interval, with the oldest unequivocal bilaterian body fossils found in the Early Cambrian. Molecular clocks and biomarkers provide independent estimates for the timing of animal origins, and both suggest a cryptic Neoproterozoic history for Metazoa that extends considerably beyond the Cambrian fossil record. We report an assemblage of ichnofossils from Ediacaran–Cambrian siltstones in Brazil, alongside U–Pb radioisotopic dates that constrain the age of the oldest specimens to 555–542 Myr. X-ray microtomography reveals three-dimensionally preserved traces ranging from 50 to 600 μm in diameter, indicative of small-bodied, meiofaunal tracemakers. Burrow morphologies suggest they were created by a nematoid-like organism that used undulating locomotion to move through the sediment. This assemblage demonstrates animal–sediment interactions in the latest Ediacaran period, and provides the oldest known fossil evidence for meiofaunal bilaterians. Our discovery highlights meiofaunal ichnofossils as a hitherto unexplored window for tracking animal evolution in deep time, and reveals that both meiofaunal and macrofaunal bilaterians began to explore infaunal niches during the late Ediacaran.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Locality map and stratigraphic column of the Ediacaran–Early Cambrian Corumbá Group: composite section compiled from logs in the Corumbá–Ladário region, Mato Grosso do Sul State, Brazil.
Fig. 2: Hand specimens and scanning electron microscopy photomicrographs of M. minima and D. lyelli traces from the Guaicurus Formation, Laginha Mine, Mato Grosso do Sul State, Brazil.
Fig. 3: Photographs and CT volume renders of M. minima burrows from the Ediacaran Tamengo Formation, Ladário, Mato Grosso do Sul State, Brazil.
Fig. 4: CT slices and 3D reconstructions of a burrow assemblage in specimen OUMNH ÁU.3 from the Early Cambrian/latest Ediacaran Guaicurus Formation.
Fig. 5: Specimen OUMNH ÁU.4/p1 from the Guaicurus Formation from which burrow measurement data were obtained.
Fig. 6: Plot showing the temporal distribution of body and trace fossils from key Ediacaran and earliest Cambrian stratigraphic sections that are radio-isotopically constrained to a useful level of precision.


  1. 1.

    McIlroy, D. & Logan, G. A. The impact of bioturbation on infaunal ecology and evolution during the Proterozoic–Cambrian transition. Palaios 14, 58–72 (1999).

    Article  Google Scholar 

  2. 2.

    Mángano M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran–Cambrian transition: evolutionary and geobiological feedbacks. Proc. R. Soc. B 281, 20140038 (2014).

  3. 3.

    Cunningham, J. A., Liu, A. G., Bengtson, S. & Donoghue, P. C. The origin of animals: can molecular clocks and the fossil record be reconciled? Bioessays 39, 1–12 (2017).

    Article  PubMed  Google Scholar 

  4. 4.

    Van Iten, H. et al. in The Cnidaria, Past, Present and Future (eds Goffredo, S. & Dubinsky, Z.) 31–40 (Springer, Berlin, 2016).

  5. 5.

    Penny, A. M. et al. Early animals. Ediacaran metazoan reefs from the Nama Group, Namibia. Science 344, 1504–1506 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Bengtson, S. & Zhao, Y. Predatorial borings in Late Precambrian mineralized exoskeletons. Science 257, 367–369 (1992).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Vinther, J., Parry, L., Briggs, D. E. G. & Van Roy, P. Ancestral morphology of molluscs revealed by a new Ordovician stem aculiferan. Nature 542, 471–474 (2017).

  8. 8.

    Tarhan, L. G., Droser, M. L., Planavsky, N. J. & Johnston, D. T. Protracted development of bioturbation through the early Palaeozoic era. Nat. Geosci. 8, 865–869 (2015).

  9. 9.

    Vannier, J., Calandra, I., Gaillard, C. & Żylińska, A. Priapulid worms: pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology 38, 711–714 (2010).

    Article  Google Scholar 

  10. 10.

    Buatois, L. A. & Mángano, M. G. Ichnology: Organism–Substrate Interactions in Space and Time (Cambridge Univ. Press, Cambridge, 2011).

  11. 11.

    Jensen, S. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integr. Comp. Biol. 43, 219–228 (2003).

    Article  PubMed  Google Scholar 

  12. 12.

    Gehling, J. G., Runnegar, B. N. & Droser, M. L. Scratch traces of large Ediacara bilaterian animals. J. Paleontol. 88, 284–298 (2014).

    Article  Google Scholar 

  13. 13.

    Menon, L. R., McIlroy, D. & Brasier, M. D. Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology 41, 895–898 (2013).

  14. 14.

    Jensen, S., Saylor, B. Z., Gehling, J. G. & Germs, G. J. Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28, 143–146 (2000).

    Article  Google Scholar 

  15. 15.

    Chen, Z. et al. Trace fossil evidence for Ediacaran bilaterian animals with complex behaviours. Precambrian Res. 224, 690–701 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Liu, A. G., McIlroy, D. & Brasier, M. D. First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38, 123–126 (2010).

    Article  Google Scholar 

  17. 17.

    Rogov, V. et al. The oldest evidence of bioturbation on Earth. Geology 40, 395–398 (2012).

    CAS  Article  Google Scholar 

  18. 18.

    dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yin, Z. et al. Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian. Proc. Natl Acad. Sci. USA 112, E1453–E1460 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Love, G. D. & Summons, R. E. The molecular record of Cryogenian sponges–a response to Antcliffe (2013). Palaeontology 58, 1131–1136 (2015).

  21. 21.

    Fortey, R. A., Briggs, D. E. G. & Wills, M. A. The Cambrian evolutionary ‘explosion’ recalibrated. BioEssays 19, 429–434 (1997).

    Article  Google Scholar 

  22. 22.

    Budd, G. E. & Jensen, S. A critical reappraisal of the fossil record of the bilaterian phyla. Biol. Rev. 75, 253–295 (2000).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Cannon, J. T. et al. Xenacoelomorpha is the sister group to Nephrozoa. Nature 530, 89–93 (2016).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Laumer, C. E. et al. Spiralian phylogeny informs the evolution of microscopic lineages. Curr. Biol. 25, 2000–2006 (2015).

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediments (Springer Science & Business Media, Berlin, 2008).

  26. 26.

    Löhr, S. & Kennedy, M. Micro-trace fossils reveal pervasive reworking of Pliocene sapropels by low-oxygen-adapted benthic meiofauna. Nat. Commun. 6, 6589 (2015).

  27. 27.

    Cullen, D. J. Bioturbation of superficial marine sediments by interstitial meiobenthos. Nature 242, 323–324 (1973).

    Article  Google Scholar 

  28. 28.

    Harvey, T. H. P. & Butterfield, N. J. Exceptionally preserved Cambrian loriciferans and the early animal invasion of the meiobenthos. Nat. Ecol. Evol. 1, 0022 (2017).

    Article  Google Scholar 

  29. 29.

    Han, J., Morris, S. C., Ou, Q., Shu, D. & Huang, H. Meiofaunal deuterostomes from the basal Cambrian of Shaanxi (China). Nature 542, 228–231 (2017).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    de Alvarenga, C. J. S et al. in Neoproterozoic–Cambrian Tectonics, Global Change and Evolution: A Focus on Southwestern Gondwana (eds Gaucher, C., Sial, A. N., Halverson, G. P. & Frimmel, H. E.) 15–28 (Elsevier, Amsterdam, 2009).

  31. 31.

    Gaucher, C., Boggiani, P. C., Sprechmann, P., Sial, A. N. & Fairchild, T. R. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Res. 120, 241–278 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    Bowring, S. A. et al. Geochronologic constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307, 1097–1145 (2007).

    CAS  Article  Google Scholar 

  33. 33.

    Fillion, D. & Pickerill, R. K. Ichnology of the Cambrian? to Lower Ordovician Bell Island and Wabana Groups of Eastern Newfoundland, Canada (Palaeontographica Canadiana No. 7, Canadian Society of Petroleum Geologists, St. John’s, 1990).

  34. 34.

    Cai, Y., Hua, H., Xiao, S., Schiffbauer, J. D. & & Li, P. Biostratinomy of the late Ediacaran pyritized Gaojiashan Lagerstätte from southern Shaanxi, South China: importance of event deposits. Palaios 25, 487–506 (2010).

    Article  Google Scholar 

  35. 35.

    LoDuca, S., Bykova, N., Wu, M., Xiao, S. & Zhao, Y. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: a tale of two floras. Geobiology 15, 588–616 (2017).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Virtasalo, J. J., Löwemark, L., Papunen, H., Kotilainen, A. T. & Whitehouse, M. J. Pyritic and baritic burrows and microbial filaments in postglacial lacustrine clays in the northern Baltic Sea. J. Geol. Soc. 167, 1185–1198 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. http://dx.doi.org/10.1016/j.jembe.2017.01.007 (2017).

  38. 38.

    Schieber, J. The role of an organic slime matrix in the formation of pyritized burrow trails and pyrite concretions. Palaios 17, 104–109 (2002).

    Article  Google Scholar 

  39. 39.

    Uchman, A. Eocene flysch trace fossils from the Hecho Group of the Pyrenees, northern Spain. Beringeria 28, 3–41 (2001).

    Google Scholar 

  40. 40.

    Garwood, R. & Dunlop, J. The walking dead: Blender as a tool for paleontologists with a case study on extinct arachnids. J. Paleontol. 88, 735–746 (2014).

    Article  Google Scholar 

  41. 41.

    Powilleit, M., Kitlar, J. & Graf, G. Particle and fluid bioturbation caused by the priapulid worm Halicryptus spinulosus (v. Seibold). Sarsia 79, 109–117 (1994).

    Article  Google Scholar 

  42. 42.

    Bromley, R. G. Trace Fossils: Biology, Taxonomy and Applications (Routledge, London, 2012).

  43. 43.

    Anderson, D. T. Embryology and Phylogeny in Annelids and Arthropods (International Series of Monographs in Pure and Applied Biology Zoology, Elsevier, Oxford, 2013).

  44. 44.

    Collins, A. G., Lipps, J. H. & Valentine, J. W. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers. Paleobiology 26, 47–55 (2000).

    Article  Google Scholar 

  45. 45.

    Seilacher A. Trace Fossil Analysis (Springer, Heidelberg, 2007).

  46. 46.

    Beron, C. et al. The burrowing behavior of the nematode Caenorhabditis elegans: a new assay for the study of neuromuscular disorders. Genes Brain Behav. 14, 357–368 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Baliński, A., Sun, Y. & Dzik, J. Traces of marine nematodes from 470 million years old Early Ordovician rocks in China. Nematology 15, 567–574 (2013).

    Article  Google Scholar 

  48. 48.

    McIlroy, D. & Brasier, M. D. Ichnological evidence for the Cambrian Explosion in the Ediacaran to Cambrian succession of Tanafjord, Finnmark, northern Norway. Geol. Soc. Spec. Publ. 448, 351–369 (2016).

    Article  Google Scholar 

  49. 49.

    Borner, J., Rehm, P., Schill, R. O., Ebersberger, I. & Burmester, T. A transcriptome approach to ecdysozoan phylogeny. Mol. Phylogenet. Evol. 80, 79–87 (2014).

    Article  PubMed  Google Scholar 

  50. 50.

    Hua, H., Pratt, B. R. & Zhang, L.-Y. Borings in Cloudina shells: complex predator–prey dynamics in the terminal Neoproterozoic. Palaios 18, 454–459 (2003).

    Article  Google Scholar 

  51. 51.

    Darroch, S. A. F. et al. Biotic replacement and mass extinction of the Ediacara biota. Proc. R. Soc. B 282, 20151003 (2015).

  52. 52.

    Boggiani, P. C. et al. Chemostratigraphy of the Tamengo Formation (Corumba Group, Brazil): a contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Res. 182, 382–401 (2010).

    CAS  Article  Google Scholar 

  53. 53.

    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).

    CAS  Article  Google Scholar 

  54. 54.

    Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).

    CAS  Article  Google Scholar 

  55. 55.

    McLean, N., Condon, D. J., Schoene, B. & Bowring, S. A. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME tracer calibration part II). Geochim. Cosmochim. Acta 164, 481–501 (2015).

  56. 56.

    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C4, 1889–1906 (1971).

    Google Scholar 

  57. 57.

    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Hickman-Lewis, K., Garwood, R. J., Withers, P. J. & Wacey, D. X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains. Geol. Soc. Spec. Publ. 448, 33–56 (2016).

    Google Scholar 

  59. 59.

    Sutton, M. D., Garwood, R. J., Siveter, D. J. & Siveter, D. J. SPIERS and VAXML; a software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontol. Electron. 15, 1–14 (2012).

    Google Scholar 

  60. 60.

    Garwood, R. et al. Tomographic reconstruction of neopterous Carboniferous insect nymphs. PLoS ONE 7, e45779 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82, 518–529 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Fraley, C. & Raftery, A. E. MCLUST: software for model-based cluster analysis. J. Classif. 16, 297–306 (1999).

    Article  Google Scholar 

  63. 63.

    Darroch, S. A., Laflamme, M. & Clapham, M. E. Population structure of the oldest known macroscopic communities from Mistaken Point, Newfoundland. Paleobiology 39, 591–608 (2013).

    Article  Google Scholar 

  64. 64.

    Grotzinger, J. P., Bowring, S. A., Saylor, B. Z. & Kaufman, A. J. Biostratigraphic and geochronologic constraints on early animal evolution. Science 270, 598–604 (1995).

    CAS  Article  Google Scholar 

  65. 65.

    Grazhdankin, D. Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30, 203–221 (2004).

    Article  Google Scholar 

  66. 66.

    Martin, M. W. et al. Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. Science 288, 841–845 (2000).

    CAS  Article  PubMed  Google Scholar 

  67. 67.

    Condon, D. J. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Yang, C., Li, X. H., Zhu, M. & Condon, D. SIMS U–Pb zircon geochronological constraints on upper Ediacaran stratigraphic correlations, South China. Geol. Mag. 1–15 (2016).

  69. 69.

    Pu, J. P. et al. Dodging snowballs: geochronology of the Gaskiers glaciation and the first appearance of the Ediacaran biota. Geology 44, 955–958 (2016).

    Article  Google Scholar 

  70. 70.

    Noble, S. et al. Age and global context of the Ediacaran fossils of Charnwood Forest, Leicestershire, UK. Geol. Soc. Am. Bull. 127, 250–265 (2015).

    CAS  Article  Google Scholar 

Download references


We acknowledge the support and guidance of our co-author M. Brasier in the early stages of this work, and particularly his invitation for L.A.P. to undertake fieldwork in Brazil in 2012. Field costs for L.A.P. were supported by an undergraduate travel grant from St. Anne’s College, University of Oxford. Fieldwork costs for M.D.B. were supported by CNPq-Conselho Nacional Desenvolvimento Científico e Tecnológico- Brazil (Proc. 451245/2012-1). This project was supported by an NERC Isotope Geoscience Facilities Steering Committee grant (project IP-1560-0515). J.M.L., P.C.B., R.T., G.A.C.C., C.Q.C.D. and M.L.A.F.P. were supported by grant numbers 2009/02312-4, 2010/02677-0, 2013/17835-8 and 2016-06114-6, São Paulo Research Foundation (FAPESP), Brazil. A.G.L. and L.A.P. are supported by the Natural Environment Research Council (grant numbers NE/L011409/2 and NE/L501554/1, respectively). R.J.G. is a Scientific Associate at the Natural History Museum, London, and a member of the Interdisciplinary Centre for Ancient Life (UMRI). D.M. recognizes the support of an NSERC discovery grant. We are grateful to L. A. dos Santos Reis (Votorantim Cimentos) for facilitating access to the Laginha Mine. We thank L. Tarhan and S. Darroch for constructive reviews.

Author information




L.A.P. found and initially identified the Multina specimens in the Guaicurus Formation. P.C.B., A.G.L., C.Q.C.D. and J.M.L. found the Multina specimens in Tamengo Formation. All authors collaborated to develop this research project. A.G.L. and D.J.C. secured funding for geochronological dating. L.A.P., D.J.C. and R.J.G. conducted the analyses. P.C.B., R.T., J.M.L., C.Q.C.D., M.L.A.F.P. and G.A.C.C. measured the stratigraphic section and collected samples for dating. L.A.P., D.M., D.J.C. and A.G.L. developed the manuscript, and all the authors were involved in data interpretation and the final redrafting of the manuscript.

Corresponding author

Correspondence to Luke A. Parry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures and Supplementary Tables

Supplementary Video 1

Video of tomographic models

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parry, L.A., Boggiani, P.C., Condon, D.J. et al. Ichnological evidence for meiofaunal bilaterians from the terminal Ediacaran and earliest Cambrian of Brazil. Nat Ecol Evol 1, 1455–1464 (2017). https://doi.org/10.1038/s41559-017-0301-9

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing