Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Worldwide patterns of human epigenetic variation

Abstract

DNA methylation is an epigenetic modification, influenced by both genetic and environmental variation, that plays a key role in transcriptional regulation and many organismal phenotypes. Although patterns of DNA methylation have been shown to differ between human populations, it remains to be determined how epigenetic diversity relates to the patterns of genetic and gene expression variation at a global scale. Here we measured DNA methylation at 485,000 CpG sites in five diverse human populations, and analysed these data together with genome-wide genotype and gene expression data. We found that population-specific DNA methylation mirrors genetic variation, and has greater local genetic control than mRNA levels. We estimated the rate of epigenetic divergence between populations, which indicates far greater evolutionary stability of DNA methylation in humans than has been observed in plants. This study provides a deeper understanding of worldwide patterns of human epigenetic diversity, as well as initial estimates of the rate of epigenetic divergence in recent human evolution.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Context of genome-wide population structure.
Fig. 2: Population specificity of CpG methylation.
Fig. 3: Structure of epigenome-wide population differences.
Fig. 4: Epigenetic divergence as a linear function of genetic distance.

References

  1. Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, NJ, 1994).

    Google Scholar 

  2. Li, J. Z. et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science 319, 1100–1104 (2008).

    CAS  Article  PubMed  Google Scholar 

  3. Novembre, J. et al. Genes mirror geography within Europe. Nature 456, 98–101 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Jakobsson, M. et al. Genotype, haplotype and copy-number variation in worldwide human populations. Nature 451, 998–1003 (2008).

    CAS  Article  PubMed  Google Scholar 

  5. Ramachandran, S. et al. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa. Proc. Natl Acad. Sci. USA 102, 15942–15947 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Rosenberg, N. A. et al. Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet. 10, e70 (2005).

    Article  Google Scholar 

  7. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    CAS  Article  PubMed  Google Scholar 

  8. Heyn, H. et al. DNA methylation contributes to natural human variation. Genome Res. 23, 1363–1372 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Fraser, H. B., Lam, L. L., Neumann, S. M. & Kobor, M. S. Population-specificity of human DNA methylation. Genome Biol. 13, R8 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Moen, E. L. et al. Genome-wide variation of cytosine modifications between European and African populations and the implications for complex traits. Genetics 194, 987–996 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Fagny, M. et al. The epigenomic landscape of african rainforest hunter-gatherers and farmers. Nat. Commun. 6, 10047 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Stranger, B. E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Martin, A. R. et al. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture. PLoS Genet. 10, e1004549 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jirtle, R. L. & Skinner, M. K. Environmental epigenomics and disease susceptibility. Nat. Rev. Genet. 8, 253–262 (2007).

    CAS  Article  PubMed  Google Scholar 

  15. Feil, R. & Fraga, M. F. Epigenetics and the environment: emerging patterns and implications. Nat. Rev. Genet. 13, 97–109 (2012).

    CAS  PubMed  Google Scholar 

  16. Cann, H. M. et al. A human genome diversity cell line panel. Science 296, 261–262 (2002).

    CAS  Article  PubMed  Google Scholar 

  17. Henn, B. M., Cavalli-Sforza, L. L. & Feldman, M. W. The great human expansion. Proc. Natl Acad. Sci. USA 109, 17758–17764 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Sandoval, J. et al. Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6, 692–702 (2011).

    CAS  Article  PubMed  Google Scholar 

  19. Trapnell, C. et al. Differential gene and transcript expression analysis of rna-seq experiments with tophat and cufflinks. Nat. Protoc. 7, 562–578 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Cavalli-Sforza, L. L., Piazza, A., Menozzi, P. & Mountain, J. Reconstruction of human evolution: bringing together genetic, archaeological, and linguistic data. Proc. Natl Acad. Sci. USA 16(85), 6002–6006 (1988).

    Article  Google Scholar 

  21. Conrad, D. F. et al. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nat. Genet. 38, 1251–1260 (2006).

    CAS  Article  PubMed  Google Scholar 

  22. Creanza, N. et al. A comparison of worldwide phonemic and genetic variation in human populations. Proc. Natl Acad. Sci. USA 112, 1265–1272 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385 (2002).

    CAS  Article  PubMed  Google Scholar 

  24. Lovmar, L., Ahlford, A., Jonsson, M. & Syvänen, A.-C. Silhouette scores for assessment of SNP genotype clusters. BMC Genom. 6, 35 (2005).

    Article  Google Scholar 

  25. Cavalli-Sforza, L. L. & Feldman, M. W. The application of molecular genetic approaches to the study of human evolution. Nat. Genet. 33, 266–275 (2003).

    CAS  Article  PubMed  Google Scholar 

  26. Henn, B. M., Cavalli-Sforza, L. L. & Feldman, M. W. The great human expansion. Proc. Natl Acad. Sci. USA 109, 17758–17764 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Pujol, B., Wilson, A. J., Ross, R. I. C. & Pannell, J. R. Are Qst-Fst comparisons for natural populations meaningful? Mol. Ecol. 17, 4782–4785 (2008).

    CAS  Article  PubMed  Google Scholar 

  28. Edelaar, P., Burraco, P. & Mestre, I. G. Comparisons between Qst and Fst — how wrong have we been? Mol. Ecol. 20, 4830–4839 (2011).

    Article  PubMed  Google Scholar 

  29. Leinonen, T., McCairns, R. J. S., O’Hara, R. B. & Merilä, J. Qst–Fst comparisons: evolutionary and ecological insights from genomic heterogeneity. Nat. Rev. Genet. 14, 179–190 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  31. Zuckerkandl, E. & Pauling, L. Horizons in Biochemistry. (Academic, New York, 1962).

    Google Scholar 

  32. Caliskan, M., Cusanovich, D. A., Ober, C. & Gilad, Y. The effects of EBV transformation on gene expression levels and methylation profiles. Human Mol. Genet. 20, 1643–1652 (2011).

    CAS  Article  Google Scholar 

  33. Van der Graaf, A. et al. Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proc. Natl Acad. Sci. USA 112, 6676–6681 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Becker, C. et al. Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480, 245–249 (2011).

    CAS  Article  PubMed  Google Scholar 

  35. Schmitz, R. J. et al. Transgenerational epigenetic instability is a source of novel methylation variants. Science 334, 369–373 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Mikkelsen, T. S. et al. The Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005).

    CAS  Article  Google Scholar 

  38. Bell, J. T. et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 120, R10 (2011).

    Article  Google Scholar 

  39. Feinberg, A. P. Phenotypic plasticity and the epigenetics of human disease. Nature 447, 433–440 (2007).

    CAS  Article  PubMed  Google Scholar 

  40. Maksimovic, J., Gordon, L. & Oshlack, A. SWAN: Subset-quantile within array normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol. 13, R44 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Scally, A. & Durbin, R. Revising the human mutation rate: implications for understanding human evolution. Nat. Rev. Genet. 13, 745–753 (2012).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

O.C. and M.W.F. acknowledge support from the Morrison Institute for Population and Resource Studies at Stanford and the Stanford Centre for Computational, Evolutionary and Human Genomics. B.M.H. acknowledges support from NIH grant 3R01HG003229 to C. B. Bustamante. M.S.K. is a Senior Fellow of the Canadian Institute for Advanced Research and the Canada Research Chair in Social Epigenetics. We thank members of the Feldman Laboratory, in particular N. Creanza and J. Granka, for helpful discussions, and M. Jones for comments. This research was done using resources provided by the Open Science Grid, which is supported by the National Science Foundation award 1148698, and the US Department of Energy’s Office of Science.

Author information

Authors and Affiliations

Authors

Contributions

O.C., B.M.H., M.S.K., M.W.F. and H.B.F. designed the study. J.L.M., S.M.M. and M.S.K. generated the methylation data set. O.C. analysed the data and O.C., B.M.H., M.S.K., M.W.F. and H.B.F. wrote the manuscript.

Corresponding author

Correspondence to Oana Carja.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1,2; Supplementary Tables 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carja, O., MacIsaac, J.L., Mah, S.M. et al. Worldwide patterns of human epigenetic variation. Nat Ecol Evol 1, 1577–1583 (2017). https://doi.org/10.1038/s41559-017-0299-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0299-z

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing