Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time

An Author Correction to this article was published on 05 December 2017

This article has been updated

Abstract

Rapid phenotypic evolution of quantitative traits can occur within years, but its underlying genetic architecture remains uncharacterized. Here we test the theoretical prediction that genes with intermediate pleiotropy drive adaptive evolution in nature. Through a resurrection experiment, we grew Arabidopsis thaliana accessions collected across an 8-year period in six micro-habitats representative of that local population. We then used genome-wide association mapping to identify the single-nucleotide polymorphisms (SNPs) associated with evolved and unevolved traits in each micro-habitat. Finally, we performed a selection scan by testing for temporal differentiation in these SNPs. Phenotypic evolution was consistent across micro-habitats, but its associated genetic bases were largely distinct. Adaptive evolutionary change was most strongly driven by a small number of quantitative trait loci (QTLs) with intermediate degrees of pleiotropy; this pleiotropy was synergistic with the per-trait effect size of the SNPs, increasing with the degree of pleiotropy. In addition, weak selection was detected for frequent micro-habitat-specific QTLs that shape single traits. In this population, A. thaliana probably responded to local warming and increased competition, in part mediated by central regulators of flowering time. This genetic architecture, which includes both synergistic pleiotropic QTLs and distinct QTLs within particular micro-habitats, enables rapid phenotypic evolution while still maintaining genetic variation in wild populations.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Genetic variation among accessions and phenotypic evolution between 2002 and 2010.
Fig. 2: Phenotypic changes in the TOU-A population over eight generations.
Fig. 3: Genomic patterns of the TOU-A population.
Fig. 4: Identification of genomic regions associated with bolting time variation in the TOU-A population.
Fig. 5: Genetic architecture underlying in situ phenotypic evolution in the TOU-A population when considering a threshold of 200 top SNPs.

Change history

  • 05 December 2017

    In the version of this Article previously published, there was a typographical error (‘4’ instead of ‘2’) in the equations relating F ST and effective population size (N e) in the Methods section ‘Genome-wide scan for selection based on temporal differentiation’. The correct equations are given below. $${F}_{{\rm{ST}}}\approx \frac{T}{T+2}=\frac{\tau }{\tau +2{N}_{{\rm{e}}}}$$ F ST ≈ T T + 2 = τ τ + 2 N e $${\hat{N}}_{{\rm{e}}}=\frac{\tau \left(1-{\hat{\bar{F}}}_{{\rm{ST}}}\right)}{2{\hat{\bar{F}}}_{{\rm{ST}}}}$$ N ^ e = τ 1 - F ̄ ^ ST 2 F ̄ ^ ST

References

  1. 1.

    Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate changes in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).

    Article  PubMed  Google Scholar 

  2. 2.

    DeLong, J. P. et al. How fast is fast? Eco-evolutionary dynamics and rates of change in populations and phenotypes. Ecol. Evol. 6, 573–581 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Buswell, J. M., Moles, A. T. & Hartley, S. Is rapid evolution common in introduced plant species? J. Ecol. 99, 214–224 (2011).

    Article  Google Scholar 

  4. 4.

    Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Reid, N. M. et al. The genomic landscape of rapid repeated evolutionary adaptation to toxic pollution in wild fish. Science 354, 1305–1308 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    van’t Hof, A. E., Edmonds, N., Dalikova, M., Marec, F. & Saccheri, I. J. Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332, 958–960 (2011).

    Article  PubMed  Google Scholar 

  7. 7.

    Hanikenne, M. et al. Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395 (2008).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Délye, C., Jasieniuk, M. & Le Corre, V. Deciphering the evolution of herbicide resistance in weeds. Trends Genet. 29, 649–658 (2013).

    Article  PubMed  Google Scholar 

  9. 9.

    Bay, A. B. et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 189, 463–473 (2017).

    Article  PubMed  Google Scholar 

  10. 10.

    Franks, S. J., Kane, N. C., O’Hara, N. B., Tittes, S. & Rest, J. S. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools. Mol. Ecol. 25, 3622–3631 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dittmar, E. L., Oakley, C. G., Conner, J. K., Gould, B. A. & Schmeske, D. W. Factors influencing the effect size distribution of adaptive substitutions. Proc. R. Soc. B 283, 20153065 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Matuszewski, S., Hermisson, J. & Kopp, M. Catch me if you can: adaptation from standing genetic variation to a moving phenotypic optimum. Genetics 200, 1255–1274 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Kopp, M. & Matuszewski, S. Rapid evolution of quantitative traits: theoretical perspectives. Evol. Appl. 7, 169–191 (2014).

    Article  PubMed  Google Scholar 

  14. 14.

    Wagner, G. P. et al. Pleiotropic scaling of gene effects and the ‘cost of complexity’. Nature 452, 470–472 (2008).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Wang, Z., Liao, B.-Y. & Zhang, J. Genomic patterns of pleiotropy and the evolution of complexity. Proc. Natl Acad. Sci. USA 107, 18034–18039 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wagner, G. P. & Zhang, J. The pleiotropic structure of the genotype–phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12, 204–213 (2011).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Platt, A. et al. The scale of population structure in Arabidopsis thaliana. PLoS Genet. 6, e1000843 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Brachi, B. et al. Investigation of the geographical scale of adaptive phenological variation and its underlying genetics in Arabidopsis thaliana. Mol. Ecol. 22, 4222–4240 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Huard-Chauveau, C. et al. An atypical kinase under balancing selection confers broad-spectrum disease resistance in Arabidopsis. PLoS Genet. 9, e1003766 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Baron, E., Richirt, J., Villoutreix, R., Amsellem, L. & Roux, F. The genetics of intra- and interspecific competitive response and effect in a local population of an annual plant species. Funct. Ecol. 29, 1361–1370 (2015).

    Article  Google Scholar 

  21. 21.

    Franks, S. J. et al. The resurrection initiative: storing ancestral genotypes to capture evolution in action. BioScience 58, 870–873 (2008).

    Article  Google Scholar 

  22. 22.

    Roux, F. et al. Cytonuclear interactions affect adaptive phenotypic traits of the annual plant Arabidopsis thaliana in the field. Proc. Natl Acad. Sci. USA 113, 3687–3692 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Bone, E. & Farres, A. Trends and rates of microevolution in plants. Genetica 112–113, 165–182 (2001).

    Article  PubMed  Google Scholar 

  24. 24.

    The 1001 Genomes Consortium. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166, 481–491 (2016).

    Article  Google Scholar 

  25. 25.

    Kalisz, S. Variable selection on the timing of germination in Collinsia verna (Scrophulariaceae). Evolution 40, 479–491 (1986).

    Article  PubMed  Google Scholar 

  26. 26.

    Stratton, D. A. Spatial scale of variation in fitness of Erigeron annuus. Am. Nat. 146, 608–624 (1995).

    Article  Google Scholar 

  27. 27.

    Des Marais, D. L., Hernandez, K. M. & Juenger, T. E. Genotype-by-environment interaction and plasticity: exploring genomic responses of plant to the abiotic environment. Annu. Rev. Ecol. Evol. Syst. 44, 5–29 (2013).

    Article  Google Scholar 

  28. 28.

    Bent, A. F. et al. RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265, 1856–1860 (1994).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Grant, M. R. et al. Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269, 843–846 (1995).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Brachi, B. et al. Linkage and association mapping of Arabidopsis thaliana flowering time in nature. PLoS Genet. 6, e1000940 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Van Rooijen, R., Aarts, M. G. M. & Harbinson, J. Natural genetic variation for acclimation of photosynthetic light use efficiency to growth irradiance in Arabidopsis. Plant Physiol. 167, 1412–1429 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Kooke, R. et al. Genome-wide association mapping and genomic prediction elucidate the genetic architecture of morphological traits in Arabidopsis. Plant Physiol. 170, 2187–2203 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Thoen, M. P. M. et al. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. New Phytol. 213, 1346–1362 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Pavlicev, M., Cheverud, J. M. & Wagner, G. P. Measuring morphological integration using eigenvalues variance. Evol. Biol. 36, 157–170 (2009).

    Article  Google Scholar 

  35. 35.

    Korves, T. & Bergelson, J. A novel cost of R gene resistance in the presence of disease. Am. Nat. 163, 489–504 (2004).

    Article  PubMed  Google Scholar 

  36. 36.

    Scarcelli, N., Cheverud, J. M., Schall, B. A. & Kover, P. X. Antagonistic pleiotropic effect reduce the potential adaptive value of the FRIGIDA locus. Proc. Natl Acad. Sci. USA 104, 16986–16991 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Ellinger, D. & Voigt, C. A. Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann. Bot. 114, 1349–1358 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bonser, S. P. High reproduction efficiency as an adaptive strategy in competitive environments. Funct. Ecol. 27, 876–885 (2013).

    Article  Google Scholar 

  40. 40.

    Deng, W. et al. FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proc. Natl Acad. Sci. USA 108, 6680–6685 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    McKay, J. K., Richards, J. H. & Mitchell-Olds, T. Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. Mol. Ecol. 12, 1137–1151 (2013).

    Article  Google Scholar 

  42. 42.

    Li, P. et al. Multiple FLC haplotypes defined by independent cis-regulatory variation underpin life history diversity in Arabidopsis thaliana. Genes Dev. 28, 1635–1640 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Blair, L., Auge, G. & Donohue, K. Effect of FLOWERING LOCUS C on seed germination depends on dormancy. Funct. Plant Biol. 44, 493–506 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Auge, G. A., Blair, L. K., Neville, H. & Donohue, K. Maternal vernalization and vernalization-pathway genes influence progeny seed germination. New Phytol. http://dx.doi.org/10.1111/nph.14520 (2017).

  45. 45.

    Salathia, N. et al. FLOWERING LOCUS C-dependent and -independent regulation of the circadian clock by the autonomous and vernalization pathways. BMC Plant Biol. 6, 10 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Etterson, J. R. et al. Project Basline: an unprecedented resource to study plant evolution across space and time. Am. J. Bot. 103, 164–173 (2016).

    Article  PubMed  Google Scholar 

  47. 47.

    Kruuk, L. E. B., Garant, D. & Charmantier, A. (eds) in Quantitative Genetics in Wild Populations 1–15 (Oxford Univ. Press, Oxford, 2014).

  48. 48.

    Hamann, A., Wang, T., Spittlehouse, D. L. & Murdock, T. Q. A comprehensive, high-resolution database of historical and projected climate surfaces for western North America. B. Am. Meteorol. Soc. 94, 1307–1309 (2013).

    Article  Google Scholar 

  49. 49.

    Hendry, A. P. & Kinnison, M. T. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53, 1637–1653 (1999).

    Article  PubMed  Google Scholar 

  50. 50.

    Gingerich, P. D. Rates of evolution on the time scale of the evolutionary process. Genetica 112–113, 127–144 (2001).

    Article  PubMed  Google Scholar 

  51. 51.

    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Horton, M. W. et al. Genome-wide patterns of genetic variation in worldwide Arabidopsis thaliana accessions for the RegMap panel. Nat. Genet. 44, 212–216 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Atwell, S. et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465, 627–631 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Hermisson, J. & McGregor, A. P. Pleiotropic scaling and QTL data. Nature 456, E3–E4 (2008).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Goldringer, I. & Bataillon, T. On the distribution of temporal variations in allele frequency consequences for the estimation of effective population size and the detection of loci undergoing selection. Genetics 168, 563–568 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).

    CAS  PubMed  Google Scholar 

  62. 62.

    Skoglund, P., Sjödin, P., Skoglund, T., Lascoux, M. & Jakobsson, M. Investigating population history using temporal genetic differentiation. Mol. Biol. Evol. 31, 2516–2527 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63.

    The Gene Ontology Consortium. The Gene Ontology project in 2008. Nucleic Acids Res. 36, D440–D444 (2008).

    Article  Google Scholar 

  64. 64.

    Scheet, P. & Stephens, M. A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78, 629–644 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Vitalis, R., Gay, L. & Navascues, M. TempoDiff: a computer program to detect selection from temporal genetic differentiation (2017); https://zenodo.org/record/375600.

Download references

Acknowledgements

We thank B. Brachi for his helpful discussions on the enrichment analysis in biological processes. This work was funded by the Région Midi-Pyrénées (CLIMARES project), the INRA Santé des Plantes et Environnement department (RESURRECTION project), the INRA-ACCAF metaprogram (SELFADAPT project), the LABEX TULIP (ANR-10-LABX-41, ANR-11-IDEX-0002-02) and the National Institute of Health.

Author information

Affiliations

Authors

Contributions

F.R. supervised the project. F.R. conceived and designed the experiments. E.B., L.A., R.Vil. and F.R. conducted the in situ experiment. L.F., C.G., C.H.-C. and F.R. measured the phenotypic traits. L.F. and F.R. analysed the phenotypic traits. O.B. and M.V. generated the sequencing data. S.C. and C.L. performed the bioinformatics analyses. L.F., C.L. and F.R. performed the GWA mapping. L.F., C.L., D.R. and F.R. performed and analysed the enrichment tests. M.N., L.G. and R.Vit. developed a methodology in selfing species to perform a genome-wide scan for selection based on temporal differentiation. V.L.C. and J.B. guided the analysis of phenotypic and genomic data. F.R. and J.B. wrote the manuscript, with contributions from L.F., C.L., R.Vil., M.N., L.G., R.Vit. and D.R. All authors contributed to the revisions.

Corresponding author

Correspondence to Fabrice Roux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A correction to this article is available online at https://doi.org/10.1038/s41559-017-0405-2.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Figures 1–21 and Supplementary Tables 1–7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Frachon, L., Libourel, C., Villoutreix, R. et al. Intermediate degrees of synergistic pleiotropy drive adaptive evolution in ecological time. Nat Ecol Evol 1, 1551–1561 (2017). https://doi.org/10.1038/s41559-017-0297-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing