Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Competing species leave many potential niches unfilled


A cornerstone of biology is that coexisting species evolve to occupy separate ecological niches. Classical theory predicts that interspecific competition should lead to all potential niches being occupied, yet observational data suggest that many niches are unfilled. Here we show that theory can be reconciled with observational data by reconceptualizing competition in the Hutchinsonian niche space to distinguish between substitutable and non-substitutable resources. When resources are substitutable (for example, seeds of different size), the components of competition along the niche axes combine multiplicatively, leading to a densely packed niche space. However, when resources are non-substitutable (such as seeds and nest sites), we show that the components of competition combine additively. Disruptive selection therefore limits niche overlap between non-substitutable niche axes, leaving most potential niches unfilled. A key corollary is that increasing the number of niche axes may greatly increase the number of potential niches but does not necessarily increase diversity. We discuss observational data that are consistent with our model and consider implications for systems with invasive species. Our work reinforces the power of competition to drive major ecological patterns: while niche space informs on species that might exist, only a small and potentially arbitrary subset will coexist in sympatry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Competition within and across resource types based on the overlap of resource utilization functions.
Fig. 2: Evolutionary trajectories of species in two-dimensional niche space consisting of either substitutable or non-substitutable resources.
Fig. 3: Number of occupied niches at equilibrium.
Fig. 4: Illustration of nonoverlapping allelic associations in 616 isolates of Streptococcus pneumoniae collected in Massachusetts, USA, between 2001 and 200723.


  1. Hutchinson, G. E. Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).

    Article  Google Scholar 

  2. Yoshiyama, R. M. & Roughgarden, J. Species packing in two dimensions. Am. Nat. 111, 107–121 (1977).

    Article  Google Scholar 

  3. Pacala, S. W. & Roughgarden, J. The evolution of resource partitioning in a multidimensional resource space. Theor. Popul. Biol. 22, 127–145 (1982).

    Article  CAS  PubMed  Google Scholar 

  4. Polechová, J. & Storch, D. Ecological niche. Encycl. Ecol. 2, 1088–1097 (2008).

    Article  Google Scholar 

  5. Begon, M., Townsend, C. R. & Harper, J. L. Ecology: from Individuals to Ecosystems (Wiley-Blackwell, Malden, 2005).

  6. Leimar, O., Sasaki, A., Doebeli, M. & Dieckmann, U. Limiting similarity, species packing, and the shape of competition kernels. J. Theor. Biol. 339, 3–13 (2013).

    Article  PubMed  Google Scholar 

  7. May, R. M. On the theory of niche overlap. Theor. Popul. Biol. 5, 297–332 (1974).

    Article  CAS  PubMed  Google Scholar 

  8. Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).

    Article  Google Scholar 

  9. Meszéna, G., Gyllenberg, M., Pásztor, L. & Metz, J. A. J. Competitive exclusion and limiting similarity: a unified theory. Theor. Popul. Biol. 69, 68–87 (2006).

    Article  PubMed  Google Scholar 

  10. Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).

    Article  CAS  PubMed  Google Scholar 

  11. Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. Proc. Natl Acad. Sci. USA 103, 6230–6235 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rohde, K. Nonequilibrium Ecology (Cambridge Univ. Press, New York, 2005).

  14. Walker, T. D. & Valentine, J. W. Equilibrium models of evolutionary species diversity and the number of empty niches. Am. Nat. 124, 887–899 (1984).

    Article  Google Scholar 

  15. Rabosky, D. L. Ecological limits and diversification rate: alternative paradigms to explain the variation in species richness among clades and regions. Ecol. Lett. 12, 735–743 (2009).

    Article  PubMed  Google Scholar 

  16. Terradas, J., Peñuelas, J. & Lloret, F. The fluctuation niche in plants. Int. J. Ecol. 2009, 1–5 (2009).

    Article  Google Scholar 

  17. Pacala, S. & Roughgarden, J. Resource partitioning and interspecific competition in two two-species insular anolis lizard communities. Science 217, 444–446 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, Princeton, 1982).

  19. Gupta, S. et al. The maintenance of strain structure in populations of recombining infectious agents. Nat. Med. 2, 437–442 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Buckee, C. O., Recker, M., Watkins, E. R. & Gupta, S. Role of stochastic processes in maintaining discrete strain structure in antigenically diverse pathogen populations. Proc. R. Soc. B 108, 15504–15509 (2011).

    CAS  Google Scholar 

  21. Penman, B. S., Ashby, B., Buckee, C. O. & Gupta, S. Pathogen selection drives nonoverlapping associations between HLA loci. Proc. Natl Acad. Sci. USA 110, 19645–19650 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Watkins, E. R. et al. Vaccination drives changes in metabolic and virulence profiles of Streptococcus pneumoniae. PLoS Pathog. 11, e1005034 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lourenço, J. et al. Lineage structure of Streptococcus pneumoniae may be driven by immune selection on the groEL heat-shock protein. Preprint at (2016).

  25. Ricklefs, R. E. Species richness and morphological diversity of passerine birds. Proc. Natl Acad. Sci. USA 109, 14482–14487 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noue, M. N. I., Okoyama, J. Y., Inoue, M. N. & Yokoyama, J. Competition for flower resources and nest sites between Bombus terrestris (L.) and Japanese native bumblebees. Appl. Entomol. Zool. 45, 29–35 (2010).

    Article  Google Scholar 

  27. McQuillan, P. B. & Hingston, A. B. Displacement of Tasmanian native megachilid bees by the recently introduced bumblebee Bombus terrestris (Linnaeus, 1758) (Hymenoptera: Apidae). Aust. J. Zool. 47, 59–65 (1999).

    Article  Google Scholar 

  28. Ishii, H. S. Community-dependent foraging habits of flower visitors: cascading indirect interactions among five bumble bee species. Ecol. Res. 28, 603–613 (2013).

    Article  Google Scholar 

  29. Soberón, J. & Nakamura, M. Niches and distributional areas: concepts, methods, and assumptions. Proc. Natl Acad. Sci. USA 106, 19644–19650 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Crisp, M. D. et al. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Brown, W. L. & Wilson, E. O. Character displacement. Syst. Zool. 5, 49–64 (1956).

    Article  Google Scholar 

  32. Urban, M. C. et al. The evolutionary ecology of metacommunities. Trends Ecol. Evol. 23, 311–317 (2008).

    Article  PubMed  Google Scholar 

  33. Geritz, S. A. H., Kisdi, E., Meszena, G. & Metz, J. A. J. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12, 35–37 (1998).

    Article  Google Scholar 

Download references


We thank G. Barabás, T. Gross, R. Iritani, S. Nee and R. Noble for helpful comments on the manuscript. B.A. acknowledges funding from the Natural Environment Research Council (NE/N014979/1). S.G., E.W. and J.L. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 268904-DIVERSITY. K.R.F. is funded by European Research Council grant 242670 and a Calleva Research Centre for Evolution and Human Science (Magdalen College, Oxford) grant.

Author information

Authors and Affiliations



K.R.F. and S.G. conceived the study. E.W. and J.L. analysed empirical data sets. B.A., E.W. and S.G. performed modelling work. B.A., E.W., K.R.F. and S.G. contributed equally to writing the manuscript.

Corresponding authors

Correspondence to Sunetra Gupta or Kevin R. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figure 1

Supplementary Code

Source code for the model described in Ashby et al. ‘Competing species leave many potential niches unfilled’

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ashby, B., Watkins, E., Lourenço, J. et al. Competing species leave many potential niches unfilled. Nat Ecol Evol 1, 1495–1501 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing