Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A biologist’s guide to Bayesian phylogenetic analysis


Bayesian methods have become very popular in molecular phylogenetics due to the availability of user-friendly software for running sophisticated models of evolution. However, Bayesian phylogenetic models are complex, and analyses are often carried out using default settings, which may not be appropriate. Here we summarize the major features of Bayesian phylogenetic inference and discuss Bayesian computation using Markov chain Monte Carlo (MCMC) sampling, the diagnosis of an MCMC run, and ways of summarizing the MCMC sample. We discuss the specification of the prior, the choice of the substitution model and partitioning of the data. Finally, we provide a list of common Bayesian phylogenetic software packages and recommend appropriate applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Bayesian analysis of a two-parameter phylogenetic example.
Fig. 2: Trace plots and histograms for d and κ from sampling a posterior distribution using efficient and inefficient MCMC chains.


  1. 1.

    Rannala, B. & Yang, Z. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J. Mol. Evol. 43, 304–311 (1996).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mau, B. & Newton, M. A. Phylogenetic inference for binary data on dendograms using Markov chain Monte Carlo. J. Comp. Graph. Stat. 6, 122–131 (1997).

    Google Scholar 

  3. 3.

    Huelsenbeck, J. P., Ronquist, F., Nielsen, R. & Bollback, J. P. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294, 2310–2314 (2001).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Pybus, O. G. et al. Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proc. Natl Acad. Sci. USA 109, 15066–15071 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Faria, N. R. et al. HIV epidemiology. The early spread and epidemic ignition of HIV-1 in human populations. Science 346, 56–61 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Lemey, P., Rambaut, A., Welch, J. J. & Suchard, M. A. Phylogeography takes a relaxed random walk in continuous space and time. Mol. Biol. Evol. 27, 1877–1885 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bloomquist, E. W., Lemey, P. & Suchard, M. A. Three roads diverged? Routes to phylogeographic inference. Trends Ecol. Evol. 25, 626–632 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Nascimento, F. F. et al. The role of historical barriers in the diversification processes in open vegetation formations during the Miocene/Pliocene using an ancient rodent lineage as a model. PLoS ONE 8, e61924 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Werneck, F. P., Leite, R. N., Geurgas, S. R. & Rodrigues, M. T. Biogeographic history and cryptic diversity of saxicolous Tropiduridae lizards endemic to the semiarid Caatinga. BMC Evol. Biol. 15, 94 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hoorn, C. et al. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330, 927–931 (2010).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    dos Reis, M. et al. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr. Biol. 25, 2939–2950 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Nascimento, F. F. et al. Evolution of endogenous retroviruses in the Suidae: evidence for different viral subpopulations in African and Eurasian host species. BMC Evol. Biol. 11, 139 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Foley, N. M., Springer, M. S. & Teeling, E. C. Mammal madness: is the mammal tree of life not yet resolved? Phil. Trans. R. Soc. B 371, 20150140 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953).

    CAS  Article  Google Scholar 

  22. 22.

    Hastings, W. K. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).

    Article  Google Scholar 

  23. 23.

    Liu, L., Xi, Z., Wu, S., Davis, C. C. & Edwards, S. V. Estimating phylogenetic trees from genome-scale data. Ann. NY Acad. Sci. 1360, 36–53 (2015).

    Article  PubMed  Google Scholar 

  24. 24.

    Xu, B. & Yang, Z. Challenges in species tree estimation under the multispecies coalescent model. Genetics 204, 1353–1368 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Szöllosi, G. J., Tannier, E., Daubin, V. & Boussau, B. The inference of gene trees with species trees. Syst. Biol. 64, e42–e62 (2015).

    Article  PubMed  Google Scholar 

  26. 26.

    Yang, Z. Molecular Evolution: A Statistical Approach (Oxford Univ. Press, Oxford, 2014).

  27. 27.

    Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Redelings, B. D. & Suchard, M. A. Joint Bayesian estimation of alignment and phylogeny. Syst. Biol. 54, 401–418 (2005).

    Article  PubMed  Google Scholar 

  29. 29.

    Löytynoja, A. & Goldman, N. Uniting alignments and trees. Science 324, 1528–1529 (2009).

    Article  PubMed  Google Scholar 

  30. 30.

    Chatzou, M. et al. Multiple sequence alignment modeling: methods and applications. Brief. Bioinform. 17, 1009–1023 (2016).

    Article  PubMed  Google Scholar 

  31. 31.

    Altenhoff, A. M. & Dessimoz, C. Inferring orthology and paralogy. Methods Mol. Biol. 855, 259–279 (2012).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Altenhoff, A. M. et al. The OMA orthology database in 2015: function predictions, better plant support, synteny view and other improvements. Nucleic Acids Res. 43, D240–D249 (2015).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Dimmic, M. in Statistical Methods in Molecular Evolution (ed. Nielsen, R.) 259–287 (Springer, New York, 2005).

  34. 34.

    Liò, P. & Goldman, N. Models of molecular evolution and phylogeny. Genome Res. 8, 1233–1244 (1998).

    Article  PubMed  Google Scholar 

  35. 35.

    Jukes, T. H. & Cantor, C. R. in Mammalian Protein Metabolism (ed. Munro, H. N.) 21–132 (Academic, New York, 1969).

  36. 36.

    Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA sequences. Lect. Math. Life Sci. 17, 57–86 (1986).

    Google Scholar 

  37. 37.

    Yang, Z. Estimating the pattern of nucleotide substitution. J. Mol. Evol. 39, 105–111 (1994).

    PubMed  Google Scholar 

  38. 38.

    Zharkikh, A. Estimation of evolutionary distances between nucleotide sequences. J. Mol. Evol. 39, 315–329 (1994).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Mayrose, I., Graur, D., Ben-Tal, N. & Pupko, T. Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior. Mol. Biol. Evol. 21, 1781–1791 (2004).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Yang, Z., Lauder, I. J. & Lin, H. J. Molecular evolution of the hepatitis B virus genome. J. Mol. Evol. 41, 587–596 (1995).

    CAS  PubMed  Google Scholar 

  41. 41.

    Yang, Z. Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol. Evol. 11, 367–372 (1996).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6, 29 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Hasegawa, M., Kishino, H. & Yano, T. Dating of the human–ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985).

    Article  Google Scholar 

  46. 46.

    Hoff, M., Orf, S., Riehm, B., Darriba, D. & Stamatakis, A. Does the choice of nucleotide substitution models matter topologically? BMC Bioinform. 17, 143 (2016).

    Article  Google Scholar 

  47. 47.

    Huelsenbeck, J. & Rannala, B. Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst. Biol. 53, 904–913 (2004).

    Article  PubMed  Google Scholar 

  48. 48.

    Wright, A. M., Lloyd, G. T. & Hillis, D. M. Modeling character change heterogeneity in phylogenetic analyses of morphology through the use of priors. Syst. Biol. 65, 602–611 (2016).

    Article  PubMed  Google Scholar 

  49. 49.

    Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25, 471–492 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Felsenstein, J. Inferring Phylogenies (Sinauer Associates, Sunderland, 2004).

    Google Scholar 

  51. 51.

    Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Heath, T. A., Huelsenbeck, J. P. & Stadler, T. The fossilized birth-death process for coherent calibration of divergence-time estimates. Proc. Natl Acad. Sci. USA 111, E2957–E2966 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    O’Reilly, J. E., dos Reis, M. & Donoghue, P. C. Dating tips for divergence-time estimation. Trends Genet. 31, 637–650 (2015).

    Article  PubMed  Google Scholar 

  54. 54.

    Rannala, B. Identifiability of parameters in MCMC Bayesian inference of phylogeny. Syst. Biol. 51, 754–760 (2002).

    Article  PubMed  Google Scholar 

  55. 55.

    Gu, X., Fu, Y. X. & Li, W. H. Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol. Biol. Evol. 12, 546–557 (1995).

    CAS  PubMed  Google Scholar 

  56. 56.

    Sullivan, J., Swofford, D. L. & Naylor, G. J. The effect of taxon sampling on estimating rate heterogeneity parameters of maximum-likelihood models. Mol. Biol. Evol. 16, 1347–1356 (1999).

    CAS  Article  Google Scholar 

  57. 57.

    Yang, Z. The BPP program for species tree estimation and species delimitation. Curr. Zool. 61, 854–865 (2015).

    Article  Google Scholar 

  58. 58.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Shapiro, B., Rambaut, A. & Drummond, A. J. Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences. Mol. Biol. Evol. 23, 7–9 (2006).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Yang, Z. & Rannala, B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol. Biol. Evol. 23, 212–226 (2006).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Nylander, J. A., Ronquist, F., Huelsenbeck, J. P. & Nieves-Aldrey, J. L. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53, 47–67 (2004).

    Article  PubMed  Google Scholar 

  62. 62.

    Maddison, W. P. Gene trees in species trees. Syst. Biol. 46, 523–536 (1997).

    Article  Google Scholar 

  63. 63.

    Nichols, R. Gene trees and species tree are not the same. Trends Ecol. Evol. 16, 358–364 (2001).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Liu, L. & Pearl, D. K. Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst. Biol. 56, 504–514 (2007).

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Edwards, S. V. et al. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Mol. Phylogenet. Evol. 94, 447–462 (2016).

    Article  PubMed  Google Scholar 

  66. 66.

    Vijaykrishna, D., Mukerji, R. & Smith, G. J. D. RNA virus reassortment: an evolutionary mechanism for host jumps and immune evasion. PLoS Pathog. 11, e1004902 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Ronquist, F., van der Mark, P. & Huelsenbeck, J. P. in The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing (eds Lemey, P. et al.) 210–236 (Cambridge Univ. Press, New York, 2009).

  68. 68.

    Brown, J. M., Hedtke, S. M., Lemmon, A. R. & Lemmon, E. M. When trees grow too long: investigating the causes of highly inaccurate bayesian branch-length estimates. Syst. Biol 59, 145–161 (2010).

    Article  PubMed  Google Scholar 

  69. 69.

    Rannala, B., Zhu, T. & Yang, Z. Tail paradox, partial identifiability, and influential priors in Bayesian branch length inference. Mol. Biol. Evol. 29, 325–335 (2012).

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    dos Reis, M., Zhu, T. & Yang, Z. The impact of the rate prior on Bayesian estimation of divergence times with multiple loci. Syst. Biol. 63, 555–565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4, e88 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Yang, Z. & Rannala, B. Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol. Biol. Evol. 14, 717–724 (1997).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Rannala, B. & Yang, Z. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics 164, 1645–1656 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Ho, S. Y. & Phillips, M. J. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58, 367–380 (2009).

    Article  PubMed  Google Scholar 

  75. 75.

    Thorne, J. L., Kishino, H. & Painter, I. S. Estimating the rate of evolution of the rate of molecular evolution. Mol. Biol. Evol. 15, 1647–1657 (1998).

    CAS  Article  PubMed  Google Scholar 

  76. 76.

    Rannala, B. & Yang, Z. Inferring speciation times under an episodic molecular clock. Syst. Biol. 56, 453–466 (2007).

    Article  PubMed  Google Scholar 

  77. 77.

    dos Reis, M., Donoghue, P. C. & Yang, Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat. Rev. Genet. 17, 71–80 (2016).

    Article  PubMed  Google Scholar 

  78. 78.

    Yang, Z. & Rodriguez, C. E. Searching for efficient Markov chain Monte Carlo proposal kernels. Proc. Natl Acad. Sci. USA 110, 19307–19312 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).

    Article  Google Scholar 

  80. 80.

    Lakner, C., van der Mark, P., Huelsenbeck, J. P., Larget, B. & Ronquist, F. Efficiency of Markov chain Monte Carlo tree proposals in Bayesian phylogenetics. Syst. Biol. 57, 86–103 (2008).

    Article  PubMed  Google Scholar 

  81. 81.

    Green, P. J. & Han, X. L. in Stochastic Models, Statistical Methods, and Algorithms in Image Analysis (eds Barone, P. et al.) 142–164 (Springer, New York, 1992).

  82. 82.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2017).

  83. 83.

    Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. Tracer v.1.6 (2014);

  84. 84.

    Solís-Lemus, C., Knowles, L. L. & Ané, C. Bayesian species delimitation combining multiple genes and traits in a unified framework. Evolution 69, 492–507 (2015).

    Article  PubMed  Google Scholar 

  85. 85.

    Chen, M.-H., Kuo, L. & Lewis, P. Bayesian Phylogenetics: Methods, Algorithms, and Applications (Chapman & Hall/CRC, Boca Raton,2014).

  86. 86.

    Gelman, A. et al. Bayesian Data Analysis (Chapman & Hall/CRC, Boca Raton, 2013).

  87. 87.

    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Höhna, S. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  Article  PubMed  Google Scholar 

  91. 91.

    Lewis, P. O., Holder, M. T. & Swofford, D. L. Phycas: software for Bayesian phylogenetic analysis. Syst. Biol. 64, 525–531 (2015).

    CAS  Article  PubMed  Google Scholar 

  92. 92.

    Lewis, P. O., Holder, M. T. & Holsinger, K. E. Polytomies and Bayesian phylogenetic inference. Syst. Biol. 54, 241–253 (2005).

    Article  PubMed  Google Scholar 

  93. 93.

    Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    CAS  Article  PubMed  Google Scholar 

  94. 94.

    Beerli, P. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22, 341–345 (2006).

    CAS  Article  PubMed  Google Scholar 

  95. 95.

    Hey, J. & Nielsen, R. Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics. Proc. Natl Acad. Sci. USA 104, 2785–2790 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. 96.

    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Nylander, J. A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583 (2008).

    CAS  Article  PubMed  Google Scholar 

  99. 99.

    Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall/CRC, London, 1994).

Download references


This work was supported by Biotechnology and Biological Sciences Research Council (UK) grant BB/N000609/1. F.F.N. was supported by a Royal Society and British Academy Newton International Fellowship (UK) grant number NF140338.

Author information




F.F.N. conceived the idea. F.F.N., M.d.R. and Z.Y. wrote the paper.

Corresponding authors

Correspondence to Fabrícia F. Nascimento or Ziheng Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nascimento, F.F., Reis, M.d. & Yang, Z. A biologist’s guide to Bayesian phylogenetic analysis. Nat Ecol Evol 1, 1446–1454 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing