Host-specific infestation in early Cambrian worms

Abstract

Symbiotic relationships are widespread in terrestrial and aquatic animals today, but evidence of symbiosis in the fossil record between soft-bodied bilaterians where the symbiont is intimately associated with the integument of the host is extremely rare. The radiation of metazoan life apparent in the Ediacaran (~635–541 million years ago) and Cambrian (~541–488 million years ago) periods is increasingly accepted to represent ecological diversification resulting from earlier key genetic developmental events and other innovations that occurred in the late Tonian and Cryogenian periods (~850–635 million years ago). The Cambrian has representative animals in each major ecospace category, the early Cambrian in particular having witnessed the earliest known complex animal communities and trophic structures, including symbiotic relationships. Here we report on newly discovered Cricocosmia and Mafangscolex worms that are hosts to aggregates of a new species of tiny worm in the lower Cambrian (Series 2, Stage 3) Chengjiang Lagerstätte of Yunnan Province, southwest China. The worm associations suggest the earliest known record of aggregate infestation of the integument of a soft-bodied bilaterian, host specificity and host shift.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Cluster of I. fellatus attached to C. jinningensis.
Fig. 2: Morphology of I. fellatus.
Fig. 3: Host worms and attached I. fellatus from the Chengjiang biota.
Fig. 4: Artist’s reconstruction of I. fellatus infesting C. jinningensis.

References

  1. 1.

    Hou, X. et al. The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life. 2nd edn (Wiley Blackwell, Oxford, 2017).

    Google Scholar 

  2. 2.

    Müller, K. J. & Hinz-Schallreuter, I. Palaeoscolecid worms from the middle Cambrian of Australia. Palaeontology 36, 549–592 (1993).

    Google Scholar 

  3. 3.

    Dong, X. et al. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: early Cambrian to early Ordovician scalidophorans. Palaeontology 53, 1291–1314 (2010).

    Article  Google Scholar 

  4. 4.

    Paracer, S. & Ahmadjian, V. Symbiosis: An Introduction to Biological Associations (Oxford Univ. Press, Oxford, 2000).

    Google Scholar 

  5. 5.

    Douglas, A. The Symbiotic Habit (Princeton Univ. Press, New Jersey, 2010).

    Google Scholar 

  6. 6.

    Conway Morris, S. Parasites and the fossil record. Parasitology 82, 489–509 (1981).

    Article  Google Scholar 

  7. 7.

    Conway Morris, S. in Palaeobiology: A Synthesis (eds Briggs, D. E. G. & Crowther, P. R.) 376–381 (Blackwell, Oxford, 1990).

  8. 8.

    Baumiller, T. K. & Gain, F. J. Fossil record of parasitism on marine invertebrates with special emphasis on the platyceratid–crinoid interaction. Paleontol. Soc. Papers 8, 195–209 (2002).

    Google Scholar 

  9. 9.

    De Baets, K. & Littlewood, D. T. J. (eds) in Advances in Parasitology 1–51 (Academic Press, London, 2015).

  10. 10.

    Leung, T. L. F. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol. Rev. 92, 410–430 (2015).

    Article  PubMed  Google Scholar 

  11. 11.

    Siveter, D. J., Briggs, D. E. G., Siveter, D. J. & Sutton, M. D. A 425-million-year-old Silurian pentastomid parasitic on ostracods. Curr. Biol. 23, 1–6 (2015).

    Google Scholar 

  12. 12.

    Vinn, O. Early symbiotic interactions in the Cambrian. Palaios 32, 231–237 (2017).

    Article  Google Scholar 

  13. 13.

    Zhang, Z., Han, J., Wang, Y., Emig, C. C. & Shu, D. Epibionts on the lingulate brachiopod Diandongia from the early Cambrian Chengjiang Lagerstätte, South China. Proc. R. Soc. B 277, 175–181 (2010).

    Article  PubMed  Google Scholar 

  14. 14.

    Wang, H. et al. Peduncular attached secondary tiering acrotretoid brachiopods from the Chengjiang fauna: implications for the ecological expansion of brachiopods during the Cambrian explosion. Palaeogeog. Palaeoclimatol. Palaeoecol. 323, 60–67 (2012).

    Article  Google Scholar 

  15. 15.

    Topper, T. P., Holmer, L. E. & Caron, J.-B. Brachiopods hitching a ride: an early case of commensalism in the middle Cambrian Burgess Shale. Sci. Rep. 4, 6704 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Martin, D. & Britayev, T. A. Symbiotic polychaetes: review of known species. Oceanogr. Mar. Biol. 36, 217–340 (1998).

    Google Scholar 

  17. 17.

    Pawlik, J. P. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. 30, 273–335 (1992).

    Google Scholar 

  18. 18.

    Huang, D., Chen, J., Zhu, M. & Zhao, F. The burrow dwelling behavior and locomotion of palaeoscolecidian worms: new evidence from the Cambrian Chengjiang fauna. Palaeogeog. Palaeoclimatol. Palaeoecol. 398, 154–164 (2014).

    Article  Google Scholar 

  19. 19.

    Simon, J. C. et al. Host-based divergence in populations of the pea aphid: insights from nuclear markers and the prevalence of facultative symbionts. Proc. R. Soc. B 270, 1703–1712 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Munday, P. L., van Herwerden, L. & Dudgeon, C. L. Evidence for sympatric speciation by host shift in the sea. Curr. Biol. 14, 1498–1504 (2004).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Fordyce, J. A. Host shifts and evolutionary radiations of butterflies. Proc. R. Soc. B 277, 3735–3743 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Hu, S. Taphonomy and Palaeoecology of the Early Cambrian Chengjiang Biota from Eastern Yunnan, China (Selbsteverlag Fachrichtung Paläobiologie, Institute für Geologische Wissenschaften, Freie Universität Berlin, Berlin, 2005).

    Google Scholar 

  23. 23.

    Zhang, X., Liu, W. & Zhao, Y. Cambrian Burgess Shale-type Lagerstätten in South China: distribution and significance. Gondwana Res. 14, 255–262 (2008).

    Article  Google Scholar 

  24. 24.

    Vannier, J., Calandra, I., Gaillard, C. & Żylińska, A. Priapulid worms: pioneer horizontal burrowers at the Precambrian–Cambrian boundary. Geology 38, 711–714 (2010).

    Article  Google Scholar 

  25. 25.

    Landing, E., Geyer, G., Brasier, M. D. & Bowring, S. A. Cambrian evolutionary radiation: context, correlations, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth Sci. Rev. 123, 133–177 (2013).

    CAS  Article  Google Scholar 

  26. 26.

    Jensen, S. The Proterozoic and earliest Cambrian trace fossil record; patterns, problems and perspectives. Integr. Comp. Biol. 43, 219–228 (2003).

    Article  PubMed  Google Scholar 

  27. 27.

    Jensen, S., Droser, M. L. & Gehling, J. G. The fossil preservation and the early evolution of animals. Palaeogeog. Palaeoclimatol. Palaeoecol. 220, 19–29 (2005).

    Article  Google Scholar 

  28. 28.

    Erwin, D. H. et al. The Cambrian conundrum: early divergence and later ecological success in the early history of animals. Science 334, 1091–1097 (2011).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Erwin, D. H. & Valentine, J. W. The Cambrian Explosion: The Construction of Animal Biodiversity (Roberts and Company, Colorado, 2013).

    Google Scholar 

  30. 30.

    Bambach, R. K., Bush, A. M. & Erwin, D. H. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1–22 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The reconstruction in Fig. 4 was produced by R. Nicholls (http://paleocreations.com). The research was funded by the National Natural Science Foundation of China (41572015 and U1302232), a Natural Environment Research Council Independent Research Fellowship (NE/L011751/1), Leverhulme Trust grants (RPG-2015-441 and EM 2014‐068), a Royal Society International Joint Project (IE131457) and a Yunnan Innovation Research Team grant (2015HC029).

Author information

Affiliations

Authors

Contributions

P.C. and X.M. conceived the project and led the team. P.C., X.M., X.H. and D.Z. collected and prepared the specimens. T.G., S.E.G., G.D.E. and P.C. conducted the scanning electron microscop and element mapping analyses. Derek J.S. and P.C. photographed the specimens and prepared the figures. M.W. and P.C. produced the camera lucida drawings. X.M. calculated the infestation rates. All authors interpreted the data. M.W. and David J.S. wrote the initial draft with scientific and editorial input from P.C., X.M., G.D.E., S.E.G. and Derek J.S.

Corresponding author

Correspondence to Xiaoya Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures, Supplementary Tables and Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cong, P., Ma, X., Williams, M. et al. Host-specific infestation in early Cambrian worms. Nat Ecol Evol 1, 1465–1469 (2017). https://doi.org/10.1038/s41559-017-0278-4

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing