Shifting from a fertilization-dominated to a warming-dominated period

Abstract

Carbon dioxide and nitrogen fertilization effects on ecosystem carbon sequestration may slow down in the future because of emerging nutrient constraints, climate change reducing the effect of fertilization, and expanding land use change and land management and disturbances. Further, record high temperatures and droughts are leading to negative impacts on carbon sinks. We suggest that, together, these two phenomena might drive a shift from a period dominated by the positive effects of fertilization to a period characterized by the saturation of the positive effects of fertilization on carbon sinks and the rise of negative impacts of climate change. We discuss the evidence and processes that are likely to be leading to this shift.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: CO2 and temperature sensitivity of annual amplitude (AMP).
Fig. 2: Warming impacts on C storage in the tropics, mid-latitudes and boreal and arctic zones.
Fig. 3: Schematics showing the impacts and feedbacks of the drivers of global change on C sinks by their effects on productivity and C residence time.

References

  1. 1.

    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, Cambridge, 2013).

  2. 2.

    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Peñuelas, J. & Filella, I. Responses to a warming world. Science 294, 793–795 (2001).

    Article  PubMed  Google Scholar 

  4. 4.

    IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) (Cambridge Univ. Press, Cambridge, 2014).

  5. 5.

    Fernandez-Martinez, M., Vicca, S., Janssens, I. A., Campioli, M. & Penuelas, J. Nutrient availability and climate as the main determinants of the ratio of biomass to NPP in woody and non-woody forest compartments. Trees Struct. Funct. 30, 775–783 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data Discuss. 8, 605–649 (2016).

    Article  Google Scholar 

  7. 7.

    Fernández-Martínez, M. et al. Atmospheric deposition, CO2, and change in the land carbon sink. Sci. Rep. 7, 9632 (2017).

  8. 8.

    Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bellassen, V. et al. Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob. Change Biol. 17, 3274–3292 (2011).

    Article  Google Scholar 

  12. 12.

    Zhang, F. et al. Attributing carbon changes in conterminous U. S. forests to disturbance and non-disturbance factors from 1901 to 2010. J. Geophys. Res. Biogeosci. 118, 1345–1346 (2013).

    Article  Google Scholar 

  13. 13.

    Niu, S., Sherry, R. A., Zhou, X. & Luo, Y. Ecosystem carbon fluxes in response to warming and clipping in a tallgrass prairie. Ecosystems 16, 948–961 (2013).

    CAS  Article  Google Scholar 

  14. 14.

    Zeng, W. & Wang, W. Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of northern China. For. Ecol. Manage. 341, 59–66 (2015).

    Article  Google Scholar 

  15. 15.

    Dieleman, W. I. J. et al. Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 18, 2681–2693 (2012).

    Article  Google Scholar 

  16. 16.

    Raupach, M. R. et al. The declining uptake rate of atmospheric CO2 by land and ocean sinks. Biogeosciences 11, 3453–3475 (2014).

    Article  Google Scholar 

  17. 17.

    Peñuelas, J., Canadell, J. G. & Ogaya, R. Increased water-use efficiency during the 20th century did not translate into enhanced tree growth. Glob. Ecol. Biogeogr. 20, 597–608 (2011).

    Article  Google Scholar 

  18. 18.

    Van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2014).

    Article  Google Scholar 

  19. 19.

    Nabuurs, G.-J. et al. First signs of carbon sink saturation in European forest biomass. Nat. Clim. Change 3, 792–796 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. USA 112, 15591–15596 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Piao, S. et al. Weakening temperature control on the interannual variations of spring carbon uptake across northern lands. Nat. Clim. Change 7, 359–363 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Cordell, S., Mcclellan, M., Carter, Y. Y. & Hadway, L. J. Towards restoration of Hawaiian tropical dry forests: the Kaupulehu outplanting programme. Pacific Conserv. Biol. 14, 279–284 (2008).

    Article  Google Scholar 

  25. 25.

    Knorr, W., Arneth, A. & Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 6, 2–8 (2016).

    Article  Google Scholar 

  26. 26.

    Crowther, T. et al. Quantifying global soil C losses in response to warming. Nature 104, 104–108 (2016).

    Article  Google Scholar 

  27. 27.

    Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Davidson, E. A., Ishida, F. Y. & Nepstad, D. C. Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Glob. Change Biol. 10, 718–730 (2004).

    Article  Google Scholar 

  29. 29.

    Corlett, R. T. The impacts of droughts in tropical forests. Trends Plant Sci. 21, 584–593 (2016).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Saleska, S. R., Didan, K., Huete, A. R. & da Rocha, H. R. Amazon forests green-up during 2005 drought. Sci. Express 318, 612 (2007).

    CAS  Google Scholar 

  31. 31.

    Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Gruber, N. et al. in The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (eds Field, C. B. & Raupach, M. R.) 45–76 (Island, Washington DC, 2004).

  33. 33.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Reich, P. B. & Hobbie, S. E. Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass. Nat. Clim. Change 3, 278–282 (2012).

    Article  Google Scholar 

  35. 35.

    Norby, R. J., Warren, J. M., Iversen, C. M., Medlyn, B. E. & McMurtrie, R. E. CO2 enhancement of forest productivity constrained by limited nitrogen availability. Proc. Natl Acad. Sci. USA 107, 19368–19373 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Peñuelas, J. et al. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    PubMed  Google Scholar 

  37. 37.

    Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 8, 441–444 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation : mechanisms, implications, and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  PubMed  Google Scholar 

  39. 39.

    Fu, Y. H. et al. Declining global warming effects on the phenology of spring leaf unfolding. Nature 526, 104–107 (2015).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Korner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Peng, S. et al. Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature 501, 88–92 (2013).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) 109–230 (IPCC, Cambridge Univ. Press, Cambridge, 2012).

  44. 44.

    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Wolf, S. et al. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl Acad. Sci. USA 113, 5880–5885 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Dreesen, F. E., De Boeck, H. J., Janssens, I. A. & Nijs, I. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages. Biogeosciences 11, 109–121 (2014).

    Article  Google Scholar 

  47. 47.

    Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year 2003. Agric. For. Meteorol. 143, 123–145 (2007).

    Article  Google Scholar 

  48. 48.

    Angert, A. et al. Drier summers cancel out the CO2 uptake enhancement induced by warmer springs. Proc. Natl Acad. Sci. USA 102, 10823–10827 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Orlowsky, B. & Seneviratne, S. I. Elusive drought: uncertainty in observed trends and short-and long-term CMIP5 projections. Hydrol. Earth Syst. Sci. 17, 1765–1781 (2013).

    Article  Google Scholar 

  50. 50.

    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).

    Article  Google Scholar 

  51. 51.

    Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 35001 (2014).

    Article  Google Scholar 

  53. 53.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 465–570 (IPCC, Cambridge Univ. Press, Cambridge, 2013).

  54. 54.

    Van Groenigen, K. J. et al. Faster turnover of new soil carbon inputs under increased atmsopheric CO2. Glob. Change Biol. https://dx.doi.org/10.1111/gcb.13752 (2017)

  55. 55.

    Pechony, O. & Shindell, D. T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl Acad. Sci. USA 107, 19167–19170 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Ray, D. K. & Foley, J. Increasing global crop harvest frequency: recent trends and future directions. Environ. Res. Lett. 8, 44041 (2013).

    Article  Google Scholar 

  57. 57.

    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Luyssaert, S. et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Change 4, 389–393 (2014).

    Article  Google Scholar 

  59. 59.

    Peñuelas, J., Bartrons, M., Llusia, J. & Filella, I. Sensing the energetic status of plants and ecosystems. Trends Plant Sci. 20, 528–530 (2015).

    Article  PubMed  Google Scholar 

  60. 60.

    Lawrence, D. M. et al. The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article  Google Scholar 

  61. 61.

    Van Den Hurk, B. et al. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project—aims, setup and expected outcome. Geosci. Model Dev. 9, 2809–2832 (2016).

    Article  Google Scholar 

  62. 62.

    Stegehuis, A. I. et al. Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim. Dynam. 41, 455–477 (2013).

    Article  Google Scholar 

  63. 63.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    CAS  Article  Google Scholar 

  64. 64.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Jung, M., Reichstein, M., Schwalm, C. R., Huntingford, C. & Sitch, S. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016).

    Article  PubMed  Google Scholar 

  67. 67.

    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, 777–786 (2015).

    Article  Google Scholar 

  69. 69.

    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20119 (2008).

    Article  Google Scholar 

  70. 70.

    Jacob, D. et al. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563–578 (2014).

    Article  Google Scholar 

  71. 71.

    Vautard, R. et al. The European climate under a 2 °C global warming. Environ. Res. Lett. 9, 34006 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This Perspective was presented in the acceptance speech of the Ramon Margalef Prize in Ecology (November 2016) by J.P. The authors would like to acknowledge the financial support from the European Research Council Synergy grant ERC-SyG-2013-610028 IMBALANCE-P, the Spanish Government grant CGL2016-79835-P and the Catalan Government grant SGR 2014-274. The authors also acknowledge the improvement of the manuscript by C. Prentice.

Author information

Affiliations

Authors

Contributions

J.P. designed the study. J.P., P.C., M.F.-M., R.V. and J.S. conducted the analyses with support from J.C., I.A.J., J.C., M.O. and S.P. The paper was drafted by J.P. and P.C. M.F.-M., R.V., J.S., J.C., I.A.J., J.C., M.O. and S.P. contributed to the interpretation of the results and to the text.

Corresponding author

Correspondence to Josep Peñuelas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peñuelas, J., Ciais, P., Canadell, J.G. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat Ecol Evol 1, 1438–1445 (2017). https://doi.org/10.1038/s41559-017-0274-8

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing