Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture

Abstract

Agricultural intensification drives biodiversity loss and shapes farmers’ profit, but the role of legacy effects and detailed quantification of ecological–economic trade-offs are largely unknown. In Europe during the 1950s, the Eastern communist bloc switched to large-scale farming by forced collectivization of small farms, while the West kept small-scale private farming. Here we show that large-scale agriculture in East Germany reduced biodiversity, which has been maintained in West Germany due to >70% longer field edges than those in the East. In contrast, profit per farmland area in the East was 50% higher than that in the West, despite similar yield levels. In both regions, switching from conventional to organic farming increased biodiversity and halved yield levels, but doubled farmers’ profits. In conclusion, European Union policy should acknowledge the surprisingly high biodiversity benefits of small-scale agriculture, which are on a par with conversion to organic agriculture.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1 |: Illustrative map of West and East Germany (scale 1:30,000) at 25 May 2012.
Fig. 2: Effects of region and management on profit, revenue, cost and farm size.
Fig. 3: Effects of region and management, their interaction and edge effect on plant and arthropod species richness.
Fig. 4: Effects of region and management on overall species richness.

References

  1. 1.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity — ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

    Article  Google Scholar 

  2. 2.

    Smil, V. Detonator of the population explosion. Nature 400, 415 (1999).

    Article  CAS  Google Scholar 

  3. 3.

    Foley, J. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Kesternich, I., Siflinger, B., Smith, P. J. & Winter, K. J. The effects of World War II on economic and health outcomes across Europe. Rev. Econ. Stat. 96, 103–118 (2014).

    Article  PubMed  Google Scholar 

  5. 5.

    Kareiva, P., Watts, S., McDonald, R. & Boucher, T. Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316, 1866–1869 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Iordachi, C. & Bauerkamper, A. (eds) The Collectivization of Agriculture in Communist Eastern Europe: Comparison and Entanglements (Central European Univ. Press, Budapest, 2014).

  8. 8.

    Schöne, J. in The Collectivization of Agriculture in Communist Eastern Europe: Comparison and Entanglements (eds Iordachi, C. & Bauerkamper, A.) 147–180 (Central European Univ. Press, Budapest, 2014).

  9. 9.

    Baessler, C. & Klotz, S. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agric. Ecosyst. Environ. 115, 43–50 (2006).

    Article  Google Scholar 

  10. 10.

    Fischer, C. et al. Mixed effects of landscape structure and farming practice on bird diversity. Agric. Ecosyst. Environ. 141, 119–125 (2011).

    Article  Google Scholar 

  11. 11.

    Petrick, M. & Zier, P. Regional employment impacts of Common Agricultural Policy measures in Eastern Germany: a difference-in-differences approach. Agric. Econ. 42, 183–193 (2011).

    Article  Google Scholar 

  12. 12.

    Kleijn, D., Berendse, F., Smit, R. & Gilissen, N. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes. Nature 413, 723–725 (2001).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Schneider, M. K. et al. Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat. Commun. 5, 4151 (2014).

    Article  PubMed  CAS  Google Scholar 

  14. 14.

    Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Gabriel, D. et al. Scale matters: the impact of organic farming on biodiversity at different spatial scales. Ecol. Lett. 13, 858–869 (2010).

    Article  PubMed  Google Scholar 

  16. 16.

    Barański, M. et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br. J. Nutr. 112, 794–811 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).

    Article  Google Scholar 

  18. 18.

    Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric. Ecosyst. Environ. 113, 36–44 (2006).

    Article  Google Scholar 

  19. 19.

    Fischer, J. et al. Should agricultural policies encourage land sparing or wildlife-friendly farming? Front. Ecol. Environ. 6, 380–385 (2008).

    Article  Google Scholar 

  20. 20.

    Perfecto, I. & Vandermeer, J. The agroecological matrix as alternative to the land-sparing/agriculture intensification model. Proc. Natl Acad. Sci. USA 107, 5786–5791 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Thiele, H. & Brodersen, C. M. Differences in farm efficiency in market and transition economies: empirical evidence from West and East Germany. Eur. Rev. Agric. Econ. 26, 331–347 (1999).

    Article  Google Scholar 

  23. 23.

    Happe, K., Balmann, A., Kellermann, K. & Sahrbacher, C. Does structure matter? The impact of switching the agricultural policy regime on farm structures. J. Econ. Behav. Organ. 67, 431–444 (2008).

    Article  Google Scholar 

  24. 24.

    Batary, P., Baldi, A., Kleijn, D. & Tscharntke, T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc. R. Soc. London Ser. B 278, 1894–1902 (2011).

    Article  Google Scholar 

  25. 25.

    Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Seufert, V. & Ramankutty, N. Many shades of gray — the context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Clough, Y., Kruess, A. & Tscharntke, T. Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric. Ecosyst. Environ. 118, 285–290 (2007).

    Article  Google Scholar 

  28. 28.

    Duffy, M. Economies of size in production agriculture. J. Hunger Environ. Nutr. 4, 375–392 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Crowder, D. W. & Reganold, J. P. Financial competitiveness of organic agriculture on a global scale. Proc. Natl Acad. Sci. USA 112, 7611–7616 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2, 1–8 (2016).

    Google Scholar 

  31. 31.

    Batáry, P., Dicks, L. V., Kleijn, D. & Sutherland, W. J. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 29, 1006–1016 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Hill, B. & Bradley, B. D. Comparison of Farmers’ Incomes in the EU Member States (European Commission, DG Internal Policies, 2015).

  33. 33.

    Borenstein, M., Hedges, V. L., Higgins, P. T. J. & Rothstein, R. H. Introduction to Meta-analysis (Wiley, Hoboken, NJ, 2009).

  34. 34.

    Colwell, R. K. EstimateS: statistical estimation of species richness and shared species from samples version 8.0 http://purl.oclc.org/estimates (2006).

  35. 35.

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Article  Google Scholar 

  36. 36.

    Sutcliffe, L. M. E. et al. Harnessing the biodiversity value of Central and Eastern European farmland. Divers. Distrib. 21, 722–730 (2015).

    Article  Google Scholar 

  37. 37.

    Duelli, P., Obrist, M. K. & Schmatz, D. R. Biodiversity evaluation in agricultural landscapes: above-ground insects. Agric. Ecosyst. Environ. 74, 33–64 (1999).

    Article  Google Scholar 

  38. 38.

    KTBL Online Verfahrensrechner des Kuratorium für Technik und Bauwesen in der Landwirtschaft [Online calculator of Association for Technology and Structures in Agriculture] http://daten.ktbl.de/vrpflanze/home.action (2015).

  39. 39.

    Agravis Pflanzenschutz- und Schädlingsbekämpfungsmittel, Preisliste 2014 [Pesticides, Price List 2014] (Agravis Raiffeisen AG, 2014).

  40. 40.

    Landi Bayer Detailpreisliste 2014 [Bayer Price List 2014] (LANDI Bachtel, Landw. Genossenschaft, 2014).

  41. 41.

    Schweiger Pflanzenschutz Preisliste Frühjahr 2014 [Pesticide Pricelist Spring 2014] (Schweiger Agrar-, Bau-, Brennstoffhandel, 2014).

  42. 42.

    TopAgrar Getreideherbizide gegen Unkräuter und Ungräser [Cereal Herbicides against Weeds and Weed Grasses] (Landwirtschaftsverlag Münster, 2013).

  43. 43.

    Köpke, U. & Küpper, P. Marktanteile im Segment Bio-Lebensmittel – Folgen und Folgerungen [Market Shares in the Organic Food Segment – Consequences and Conclusions] (Institut für Organischen Landbau, 2012).

  44. 44.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  45. 45.

    R Development Core Team R: a language and environment for statistical computing version 3.2.0 (2015).

  46. 46.

    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier Science, Amsterdam, 1998).

  47. 47.

    Bartoń, K. MuMIn: multi-model inference R package version 1.14.0 (2015).

  48. 48.

    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the product of the project ‘Biodiversity and associated ecosystem services in small- vs. large-scale agriculture’ by the German Research Foundation (DFG BA 4438/1-1). We are grateful to L. Ádám for the identification of rove beetles, and to D.W. Crowder, A. Iverson and D. Kleijn for valuable comments on the manuscript. P.B. was supported by the Economic Development and Innovation Operational Programme of Hungary (GINOP–2.3.2–15–2016–00019).

Author information

Affiliations

Authors

Contributions

P.B. and T.T. conceived the study; P.B., C.F., O.M. and T.T. developed the study; P.B., R.G., F.R., S.F., C.G., A.-K.H., K.K., D.M., V.R. and A.W. collected data; R.G. and P.C. identified arthropods; P.B. analysed data with substantial input from C.F.D.; and P.B. wrote the paper with substantial input from all authors.

Corresponding author

Correspondence to Péter Batáry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures and Supplementary Tables

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batáry, P., Gallé, R., Riesch, F. et al. The former Iron Curtain still drives biodiversity–profit trade-offs in German agriculture. Nat Ecol Evol 1, 1279–1284 (2017). https://doi.org/10.1038/s41559-017-0272-x

Download citation

Further reading

Search

Quick links