Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene flow favours local adaptation under habitat choice in ciliate microcosms


Local adaptation is assumed to occur under limited gene flow. However, habitat-matching theory predicts dispersal should favour rather than hinder local adaptation when individuals selectively disperse towards habitats maximizing their performance. We provide experimental evidence that local adaptation to the upper margin of a species’ thermal niche is favoured by dispersal with habitat choice, but hindered under random dispersal. Our study challenges the idea that high gene flow precludes local adaptation, and provides unique experimental evidence of habitat choice as an overlooked mechanism responsible for adaptation under rapid environmental changes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Habitat choice and thermal performance ability.
Fig. 2: Habitat choice favours local adaptation at the thermal niche margin.


  1. Kawecki, T. J. & Ebert, D. Ecol. Lett. 7, 1225–1241 (2004).

    Article  Google Scholar 

  2. Bolnick, D. I. & Nosil, P. Evolution 61, 2229–2243 (2007).

    Article  PubMed  Google Scholar 

  3. Ronce, O. Annu. Rev. Ecol. Evol. Syst. 38, 231–253 (2007).

    Article  Google Scholar 

  4. Holt, R. D. Evol. Ecol. 1, 331–347 (1987).

    Article  Google Scholar 

  5. Edelaar, P., Siepielski, A. M. & Clobert, J. Evolution 62, 2462–2472 (2008).

    Article  PubMed  Google Scholar 

  6. Edelaar, P. & Bolnick, D. I. Trends Ecol. Evol. 27, 659–665 (2012).

    Article  PubMed  Google Scholar 

  7. Jacob, S., Bestion, E., Legrand, D., Clobert, J. & Cote, J. Evol. Ecol. 29, 851–871 (2015).

    Article  Google Scholar 

  8. Rice, W. R. & Salt, G. W. Evolution 44, 1140–1152 (1990).

    Article  PubMed  Google Scholar 

  9. Bestion, E., Clobert, J. & Cote, J. Ecol. Lett. 18, 1226–1233 (2015).

    Article  Google Scholar 

  10. Garant, D., Kruuk, L. E., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Nature 433, 60–65 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Cote, J. et al. Ecography 40, 56–73 (2017).

    Article  Google Scholar 

  12. Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Ecol. Lett. 12, 197–209 (2009).

    Article  PubMed  Google Scholar 

  13. Chaine, A. S., Schtickzelle, N., Polard, T., Huet, M. & Clobert, J. Evolution 54, 1290–1300 (2010).

    Google Scholar 

  14. Jacob, S. et al. Evolution 70, 2336–2345 (2016).

    Article  PubMed  Google Scholar 

  15. Blanquart, F., Kaltz, O., Nuismer, S. L. & Gandon, S. Ecol. Lett. 16, 1195–1205 (2013).

    Article  PubMed  Google Scholar 

  16. Postma, E. & van Noordwijk, A. J. Nature 433, 65–68 (2005).

    Article  PubMed  CAS  Google Scholar 

  17. Duckworth, R. A. & Badyaev, A. V. Proc. Natl Acad. Sci. USA 104, 15017–15022 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hendry, A. P. in Eco-evolutionary Dynamics 109–132 (Princeton Univ. Press, Princeton, NJ, 2017).

  19. Lee, C. E. Trends Ecol. Evol. 17, 386–391 (2002).

    Article  Google Scholar 

  20. Kolbe, J. et al. Nature 431, 177–181 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. Fronhofer, E. A. & Altermatt, F. Nat. Commun. 6, 6844 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Travis, J. M. J. et al. Oikos 122, 1532–1540 (2013).

    Article  Google Scholar 

  23. Zufall, R. A., Dimond, K. L. & Doerder F. P. Mol. Ecol. 22, 1081–1091 (2013).

  24. Kahm, M., Hasenbrink, G., Lichtenberg-Frate, H., Ludwig, J. & Kschischo, M. J. Stat. Softw. 33, 1–21 (2010).

Download references


We thank O. Ronce for helpful comments. This study was supported by funding from the Agence Nationale de la Recherche INDHET (ANR-12-BSV7-0023) to S.J. and J.C., ANR Netselect (ANR-10-JCJC-1704) to A.S.C., and ARC (Actions de Recherche Concertées) 10-15/031, F.S.R.-FNRS (Fond National pour la Recherche Scientifique) and UCL-FSR (Université Catholique de Louvain) to S.J., D.L. and N.S. (an FNRS Research research associate). S.J. was awarded by a  Move-In-Louvain Marie Curie Action fellowship. D.B., S.J. and N.S. were funded by the FWO (Research Foundation—Flanders) research community EVENET (Eco-evolutionary network of biotic interactions) and a networking grant from Université Catholique de Louvain (FEEDING). D.B. was funded by the FWO (INVADED G018017N). This work was conducted by S.J., D.L., A.S.C., M.H. and J.C as part of a project of the Laboratoire d’Excellence entitled TULIP (Toward a Unified Theory of Biotic Interactions; ANR-10-LABX-41), and contributes (BRC401) to the Biodiversity Research Centre at Université Catholique de Louvain, to which N.S. and S.J. are affiliated.

Author information

Authors and Affiliations



S.J., D.L., A.S.C., D.B. and J.C. defined the research theme. S.J., D.L., A.S.C., D.B., M.H. and J.C. set up the experimental protocols. S.J. performed the experiments and analysed the data with the help of M.H. and N.S. S.J. wrote the manuscript. D.L., A.S.C., D.B., N.S. and J.C. contributed substantially to the revisions.

Corresponding author

Correspondence to Staffan Jacob.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures, Supplementary Tables and Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacob, S., Legrand, D., Chaine, A.S. et al. Gene flow favours local adaptation under habitat choice in ciliate microcosms. Nat Ecol Evol 1, 1407–1410 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing