Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture

Abstract

Fisheries and aquaculture make a crucial contribution to global food security, nutrition and livelihoods. However, the UN Sustainable Development Goals separate marine and terrestrial food production sectors and ecosystems. To sustainably meet increasing global demands for fish, the interlinkages among goals within and across fisheries, aquaculture and agriculture sectors must be recognized and addressed along with their changing nature. Here, we assess and highlight development challenges for fisheries-dependent countries based on analyses of interactions and trade-offs between goals focusing on food, biodiversity and climate change. We demonstrate that some countries are likely to face double jeopardies in both fisheries and agriculture sectors under climate change. The strategies to mitigate these risks will be context-dependent, and will need to directly address the trade-offs among Sustainable Development Goals, such as halting biodiversity loss and reducing poverty. Countries with low adaptive capacity but increasing demand for food require greater support and capacity building to transition towards reconciling trade-offs. Necessary actions are context-dependent and include effective governance, improved management and conservation, maximizing societal and environmental benefits from trade, increased equitability of distribution and innovation in food production, including continued development of low input and low impact aquaculture.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Country-level trends in per capita fish supply, human population growth, and access to wild capture fisheries versus aquaculture.
Fig. 2: Fisheries and biodiversity threat status on land and sea.
Fig. 3: Marine biodiversity threat and adaptive capacity in fisheries-dependent countries.
Fig. 4: Multi-model ensemble climate change projections for potential production of marine fisheries and agriculture sectors.
Fig. 5: Climate change impacts and adaptive capacity by continent across land and sea.

Change history

  • 05 June 2018

    In the version of this Review Article originally published, the ORCIDs for Matthias Büchner, John P. Dunne and Olivier Maury were incorrect; they should have been 0000-0002-1382-7424, 0000-0002-8794-0489 and 0000-0002-7999-9982, respectively. These have now been corrected.

References

  1. 1.

    Nilsson, M., Griggs, D. & Visback, M. Map the interactions between Sustainable Development Goals. Nature 534, 320–322 (2016).

    Article  PubMed  Google Scholar 

  2. 2.

    Bene, C., Hersoug, B. & Allison, E. H. Not by rent alone: analyzing the pro-poor functions of small-scale fisheries in developing countries. Dev. Policy Rev. 28, 325–358 (2010).

    Article  Google Scholar 

  3. 3.

    Cinner, J. E. & Bodin, Ö. Livelihood diversification in tropical coastal communities: a network-based approach to analyzing ‘livelihood landscapes’. PLoS ONE 5, e11999 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. 4.

    The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All (FAO, 2016).

  5. 5.

    Golden, C. Fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Article  PubMed  Google Scholar 

  6. 6.

    World Population Prospects: The 2015 Revision, DVD Edition (United Nations Department of Economic and Social Affairs Population, 2015).

  7. 7.

    Tveterås, S. & Tveterås, R. The global competition for wild fish resources between livestock and aquaculture. J. Agric. Econ. 61, 381–397 (2010).

    Article  Google Scholar 

  8. 8.

    Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Cordell, D., Drangert, J. O. & White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Change 19, 292–305 (2009).

    Article  Google Scholar 

  10. 10.

    Shepherd, C. J. & Jackson, A. J. Global fishmeal and fish-oil supply: inputs, outputs and markets. J. Fish Biol. 83, 1046–1066 (2013).

    PubMed  CAS  Google Scholar 

  11. 11.

    Fry, J. P. et al. Environmental health impacts of feeding crops to farmed fish. Environ. Int. 91, 201–214 (2016).

    Article  PubMed  Google Scholar 

  12. 12.

    Mullon, C. et al. Modelling the global fishmeal and fishoil markets. Nat. Resour. Model 22, 564–609 (2009).

    Article  Google Scholar 

  13. 13.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Ytrestøyl, T., Aas, T. S. & Åsgård, T. Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture 448, 365–374 (2015).

    Article  Google Scholar 

  15. 15.

    Kharas, H. The Emerging Middle Class in Developing Countries (OECD, 2010).

  16. 16.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Boland, M. J. et al. The future supply of animal-derived protein for human consumption. Trends Food Sci. Tech. 29, 62–73 (2013).

    Article  CAS  Google Scholar 

  18. 18.

    Béné, C., Barange, M. & Subasinghe, R. Feeding 9 billion by 2050—putting fish back on the menu. Food Secur. 7, 261–274 (2015).

    Article  Google Scholar 

  19. 19.

    FAOSTAT (Food and Agriculture Organization, Rome, 2017).

  20. 20.

    Pauly, D. et al. China’s distant-water fisheries in the 21st century. Fish Fish. 15, 474–488 (2014).

    Article  Google Scholar 

  21. 21.

    Review of Fisheries 2011 (OECD, 2012).

  22. 22.

    Merino, G. et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Change 22, 795–806 (2012).

    Article  Google Scholar 

  23. 23.

    Fréon, P. et al. Harvesting for food versus feed: a review of Peruvian fisheries in a global context. Rev. Fish Biol. Fish 24, 381–398 (2014).

    Article  Google Scholar 

  24. 24.

    Garcia, S. M. & Rosenberg, A. A. Food security and marine capture fisheries: characteristics, trends, drivers and future perspectives. Philos. Trans. R. Soc. B 365, 2869–2880 (2010).

    Article  Google Scholar 

  25. 25.

    Rice, J. Managing fisheries well: delivering the promises of an ecosystem approach. Fish Fish. 12, 209–231 (2011).

    Article  Google Scholar 

  26. 26.

    Hilborn, R. & Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71, 1040–1046 (2014).

    Article  Google Scholar 

  27. 27.

    Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    Meissa, B. & Gascuel, D. Overfishing of marine resources: some lessons from the assessment of demersal stocks off Mauritania. ICES J. Mar. Sci. 72, 414–427 (2014).

    Article  Google Scholar 

  30. 30.

    Report of the First Workshop on the Assessment of Fishery Stocks Status in South and Southeast Asia. Bangkok, 16–19 June 2009 (FAO, 2010).

  31. 31.

    McIntyre, P. B., Reidy Liermann, C. A. & Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl Acad. Sci. USA 113, 12880–12885 (2016).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. 32.

    Anderson, S. C., Flemming, J. M., Watson, R. & Lotze, H. K. Rapid global expansion of invertebrate fisheries: trends, drivers, and ecosystem effects. PLoS ONE 6, e14735 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Newton, K., Côté, I. M., Pilling, G. M., Jennings, S. & Dulvy, N. K. Current and future sustainability of island coral reef fisheries. Curr. Biol. 17, 655–658 (2007).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    Hall, S. J., Hilborn, R., Andrew, N. L. & Allison, E. H. Innovations in capture fisheries are an imperative for nutrition security in the developing world. Proc. Natl Acad. Sci. USA 110, 8393–8398 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Allison, E. H. et al. Vulnerability of national economies to the impacts of climate change on fisheries. Fish Fish. 10, 173–196 (2009).

    Article  Google Scholar 

  36. 36.

    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Thorson, J. T., Branch, T. A., Jensen, O. P. & Quinn, T. Using model-based inference to evaluate global fisheries status from landings, location, and life history data. Can. J. Fish. Aquat. Sci. 69, 645–655 (2012).

    Article  Google Scholar 

  38. 38.

    Anderson, S. C. et al. Improving estimates of population status and trend with superensemble models. Fish Fish. 18, 732–741 (2017).

    Article  Google Scholar 

  39. 39.

    Rosenberg, A. A. et al. Applying a new ensemble approach to estimating stock status of marine fisheries around the world. Conserv. Lett. http://dx.doi.org/10.1111/conl.12363 (2017).

  40. 40.

    Dalzell, P., Adams, T. J. H. & Polunin, N. V. C. Coastal fisheries in the Pacific Islands. Oceanogr. Mar. Biol. Annu. Rev 34, 395–531 (1996).

    Google Scholar 

  41. 41.

    MacNeil, M. A. et al. Recovery potential of the world’s coral reef fishes. Nature 520, 341–344 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Bertrand, J. A., de Sola, L. G., Papaconstantinou, C., Relini, G. & Souplet, A. The general specifications of the MEDITS surveys. Sci. Mar. 66, 9–17 (2002).

    Article  Google Scholar 

  44. 44.

    Garces, L. R. et al. A regional database management system—the fisheries resource information system and tools (FiRST): its design, utility and future directions. Fish. Res. 78, 119–129 (2006).

    Article  Google Scholar 

  45. 45.

    Fernandes, P. G. et al. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1, 0170 (2017).

    Article  Google Scholar 

  46. 46.

    Dulvy, N. K. et al. Challenges and priorities in shark and ray conservation. Curr. Biol. 27, 565–572 (2017).

    Article  CAS  Google Scholar 

  47. 47.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Arthington, A. H., Dulvy, N. K., Gladstone, W. & Winfield, I. A. N. J. Fish conservation in freshwater and marine realms: status, threats and management. 857, 838–857 (2016).

  49. 49.

    IUCN Red List of Threatened Species v. 2016-1 (2016).

  50. 50.

    Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. eLife 3, e00590 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Butchart, S. H. M. et al. Measuring global trends in the status of biodiversity: Red list indices for birds. PLoS Biol. 2, (2004).

  52. 52.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C. & Shrubb, M. Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. J. Appl. Ecol. 37, 771–788 (2000).

    Article  Google Scholar 

  54. 54.

    Donald, P., Green, R. & Heath, M. Agricultural intensification and the collapse of Europe’s farmland bird populations. Proc. R. Soc. B 268, 25–9 (2001).

    Article  Google Scholar 

  55. 55.

    Pitcher, C. R. et al. Implications of Current Spatial Management Measures for AFMA ERAs for Habitats FRDC Project No 2014/204. (2016).

  56. 56.

    Collen, B. et al. Global patterns of freshwater species diversity, threat and endemism. Glob. Ecol. Biogeogr. 23, 40–51 (2014).

    Article  PubMed  Google Scholar 

  57. 57.

    Rodrigues, A. S. L. et al. Spatially explicit trends in the global conservation status of vertebrates. PLoS ONE 9, e113934 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. 58.

    Breslow, S. J. et al. Conceptualizing and operationalizing human wellbeing for ecosystem assessment and management. Environ. Sci. Policy 66, 250–259 (2016).

    Article  Google Scholar 

  59. 59.

    Human Development Report 2015. Work for Human Development (Programas de las Naciones Unidas para el Desarrollo, 2015).

  60. 60.

    Szuwalski, C. S., Burgess, M. G., Costello, C. & Gaines, S. D. High fishery catches through trophic cascades in China. Proc. Natl Acad. Sci. USA 114, 717–721 (2017).

    Article  PubMed  CAS  Google Scholar 

  61. 61.

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Drinkwater, K. F. et al. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79, 374–388 (2010).

    Article  Google Scholar 

  63. 63.

    Baumgartner, T. R., Soutar, A. & Ferreira-Bartrina, V. Reconstruction of the history of pacific sardine and northern anchovy populations over the past two millennia from sediments of the Santa Barbara basin, California. CalCOFl Rep. 33, 24–40 (1992).

    Google Scholar 

  64. 64.

    Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Finkbeiner, E. M. The role of diversification in dynamic small-scale fisheries: lessons from Baja California Sur, Mexico. Glob. Environ. Change 32, 139–152 (2015).

    Article  Google Scholar 

  66. 66.

    Aguilera, S. E. et al. Managing small-scale commercial fisheries for adaptive capacity: insights from dynamic social-ecological drivers of change in Monterey Bay. PLoS ONE 10, e0118992 (2015).

  67. 67.

    Gephart, J. A., Deutsch, L., Pace, M. L., Troell, M. & Seekell, D. A. Shocks to fish production: identification, trends, and consequences. Glob. Environ. Change 42, 24–32 (2017).

    Article  Google Scholar 

  68. 68.

    Brashares, J. S. et al. Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science 306, 1180–1183 (2004).

    Article  PubMed  CAS  Google Scholar 

  69. 69.

    Perry, R. I. et al. Sensitivity of marine systems to climate and fishing: concepts, issues and management responses. J. Mar. Syst. 79, 427–435 (2010).

    Article  Google Scholar 

  70. 70.

    McOwen, C. J., Cheung, W. W. L., Rykaczewski, R. R., Watson, R. A. & Wood, L. J. Is fisheries production within large marine ecosystems determined by bottom-up or top-down forcing? Fish Fish. 16, 623–632 (2015).

    Article  Google Scholar 

  71. 71.

    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article  CAS  Google Scholar 

  72. 72.

    Layman, C. A., Allgeier, J. E., Rosemond, A. D., Dahlgren, C. P. & Yeager, L. A. Marine fisheries declines viewed upside down: human impacts on consumer-driven nutrient recycling. Ecol. Appl. 21, 343–349 (2011).

    Article  PubMed  Google Scholar 

  73. 73.

    Mulder, C. & Elser, J. J. Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob. Change Biol. 15, 2730–2738 (2009).

    Article  PubMed Central  Google Scholar 

  74. 74.

    Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    Article  PubMed  CAS  Google Scholar 

  75. 75.

    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. 76.

    Belkin, I. M. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81, 207–213 (2009).

    Article  Google Scholar 

  77. 77.

    Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. 78.

    Nardone, A., Ronchi, B., Lacetera, N., Ranieri, M. S. & Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 130, 57–69 (2010).

    Article  Google Scholar 

  79. 79.

    Stock, C. A. et al. On the use of IPCC-class models to assess the impact of climate on living marine resources. Prog. Oceanogr. 88, 1–27 (2011).

    Article  Google Scholar 

  80. 80.

    Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  81. 81.

    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).

    Article  Google Scholar 

  82. 82.

    Blanchard, J. L. et al. Potential consequences of climate change for primary production and fish production in large marine ecosystems. Philos. Trans. R. Soc. B 367, 2979–2989 (2012).

    Article  Google Scholar 

  83. 83.

    Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).

    Article  Google Scholar 

  84. 84.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–73 (2014).

    Article  PubMed  CAS  Google Scholar 

  85. 85.

    Lefort, S. et al. Spatial and body-size dependent response of marine pelagic communities to projected global climate change. Glob. Change Biol. 21, 154–164 (2015).

    Article  PubMed  Google Scholar 

  86. 86.

    Cheung, W. W. L. & Reygondeau, G. Large benefits to marine fisheries of meeting the 1.5°C global warming target. Science 354, 1591–1594 (2016).

    Article  PubMed  CAS  Google Scholar 

  87. 87.

    Galbraith, E. D., Carozza, D. A. & Bianchi, D. A coupled human-Earth model perspective on long-term trends in the global marine fishery. Nat. Commun. 8, 14884 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. 88.

    Havlík, P. D. et al. in Climate Change and Food Systems: Global Assessments and Implications for Food Security and Trade (ed. Elbehri, A.) 176–196 (FAO, 2015).

  89. 89.

    Payne, M. R. et al. Uncertainties in projecting climate-change impacts in marine ecosystems. ICES J. Mar. Sci. 73, 1272–1282 (2016).

    Article  Google Scholar 

  90. 90.

    Asseng, S. et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 3, 827–832 (2013).

    Article  CAS  Google Scholar 

  91. 91.

    Holt, J. et al. Modelling the global coastal ocean. Philos. Trans. R. Soc. A 367, 939–951 (2009).

    Article  Google Scholar 

  92. 92.

    Piontek, F. et al. Multisectoral climate impact hotspots in a warming world. Proc. Natl Acad. Sci. USA 111, 3233–3238 (2014).

    Article  PubMed  CAS  Google Scholar 

  93. 93.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  PubMed  CAS  Google Scholar 

  94. 94.

    Fisher, B. et al. Integrating fisheries and agricultural programs for food security. Agric. Food Secur. http://dx.doi.org/10.1186/s40066-016-0078–0 (2017).

  95. 95.

    Jennings, S. & Collingridge, K. Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS ONE 10, e0133794 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. 96.

    Whittle, P. & Horwood, J. Population extinction and optimal resource management. Philos. Trans. R. Soc. B 350, 179–188 (1995).

    Article  Google Scholar 

  97. 97.

    Van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 58, 120928130709004 (2011).

    Google Scholar 

  98. 98.

    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).

    Article  Google Scholar 

  99. 99.

    Kittinger, J. N. et al. Committing to socially responsible seafood. Science 356, 912–913 (2017).

  100. 100.

    Watson, R. A., Nichols, R., Lam, V. W. Y. & Sumaila, U. R. Global seafood trade flows and developing economies: insights from linking trade and production. Mar. Policy 82, 41–49 (2017).

    Article  Google Scholar 

  101. 101.

    Kawarazuka, N. & Béné, C. The potential role of small fish species in improving micronutrient deficiencies in developing countries: building evidence. Public Health Nutr. 14, 1927–1938 (2011).

    Article  PubMed  Google Scholar 

  102. 102.

    Beveridge, M. C. M. et al. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 83, 1067–84 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. 103.

    Naylor, R., Williams, S. L. & Strong, D. R. Aquaculture: a gateway for exotic species. Science 294, 1655–1666 (2001).

    Article  PubMed  CAS  Google Scholar 

  104. 104.

    Lehnert, S. J., Heath, J. W. & Heath, D. D. Ecological and genetic risks arising from reproductive interactions between wild and farmed chinook salmon. Can. J. Fish. Aquat. Sci. 70, 1691–1698 (2013).

    Article  Google Scholar 

  105. 105.

    Van Wesenbeeck, B. K. et al. Aquaculture induced erosion of tropical coastlines throws coastal communities back into poverty. Ocean Coast. Manage. 116, 466–469 (2015).

    Article  Google Scholar 

  106. 106.

    Edwards, P. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447, 2–14 (2015).

    Article  Google Scholar 

  107. 107.

    Beveridge, M., Phillips, M., Dugan, P. & Brummet, R. in Advancing the Aquaculture Agenda: Workshop Proceedings 345–359 (OECD, 2010).

  108. 108.

    Arnason, R. Property rights in fisheries: Iceland’s experience with ITQs. Rev. Fish Biol. Fish 15, 243–264 (2005).

    Article  Google Scholar 

  109. 109.

    Sen, A. Poverty and Famines: an Essay on Entitlement and Deprivation (Oxford Univ. Press, Oxford, 1981).

  110. 110.

    Woolverton, A., Regmi, A. & Tutwiler, M. The Political Economy of Trade and Food Security (ICTSD, 2010).

  111. 111.

    Watson, R. A. et al. Marine foods sourced from farther as their use of global ocean primary production increases. Nat. Commun. 6, 7365 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. 112.

    Kleisner, K. M. et al. Exploring patterns of seafood provision revealed in the global ocean health index. Ambio 42, 910–922 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  113. 113.

    Merrigan, K. et al. Designing a sustainable diet. Science 350, 165–166 (2015).

    Article  PubMed  CAS  Google Scholar 

  114. 114.

    Watson, R., Kitchingman, A., Gelchu, A. & Pauly, D. Mapping global fisheries: sharpening our focus. Fish Fish. 5, 168–177 (2004).

    Article  Google Scholar 

  115. 115.

    Teh, L. C. L. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).

    Article  Google Scholar 

  116. 116.

    Warszawski, L. et al. A multi-model analysis of risk of ecosystem shifts under climate change. Environ. Res. Lett. 8, 44018 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

J.L.B. acknowledges funding from the UK Natural Environment Research Council (NERC) ‘Marine Ecosystems Research Programme’, the Centre for Marine Socioecology, the Institute for Marine and Antarctic Studies, the Australian Integrated Marine Observing System and CSIRO. R.A.W. acknowledges funding support from the Australian Research Council Discovery project support (DP140101377). E.A.F acknowledges funding support from the Fisheries Research and Development Corporation (2010/023) on behalf of the Australian government. S.J. acknowledges funding support from the UK Department of Environment, Food and Rural Affairs (project MF1225 ‘Integration of environmental and fisheries management’). Financial support for the fisheries and agriculture production data was provided by the German Federal Ministry of Education and Research (BMBF, grant no. 01LS1201A1) through the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). H.K.L acknowledges funding support from the Natural Sciences and Engineering Research Council (NSERC) of Canada. D.P.T. acknowledges funding from the Kanne Rassmussen Foundation, Denmark. We thank T. Smith and V. Saba for comments that greatly helped us improve earlier drafts.

Author information

Affiliations

Authors

Contributions

J.L.B. and S.J. designed the study, carried out analyses and wrote the paper; R.A.W. and E.A.F. contributed to developing the paper through ideas, analyses and figures; N.K.D. and L.N.K.D. provided interpretation and access to marine biodiversity threat data. J.D., J.E. and C.M. provided interpretation and access to agriculture and Earth system multi-model ensemble outputs. D.T., H.K.L., T.D.E., M.B, A.B., W.W.C., E.G., D.C. and O.M. provided interpretation and access to marine fishery climate change multi-model ensemble outputs. All authors provided comments on the text and figures that helped to develop the paper.

Corresponding author

Correspondence to Julia L. Blanchard.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Notes, Supplementary Table; Supplementary References; Supplementary Figures 1–3

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanchard, J.L., Watson, R.A., Fulton, E.A. et al. Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nat Ecol Evol 1, 1240–1249 (2017). https://doi.org/10.1038/s41559-017-0258-8

Download citation

Further reading