Mapping the global potential for marine aquaculture

Abstract

Marine aquaculture presents an opportunity for increasing seafood production in the face of growing demand for marine protein and limited scope for expanding wild fishery harvests. However, the global capacity for increased aquaculture production from the ocean and the relative productivity potential across countries are unknown. Here, we map the biological production potential for marine aquaculture across the globe using an innovative approach that draws from physiology, allometry and growth theory. Even after applying substantial constraints based on existing ocean uses and limitations, we find vast areas in nearly every coastal country that are suitable for aquaculture. The development potential far exceeds the space required to meet foreseeable seafood demand; indeed, the current total landings of all wild-capture fisheries could be produced using less than 0.015% of the global ocean area. This analysis demonstrates that suitable space is unlikely to limit marine aquaculture development and highlights the role that other factors, such as economics and governance, play in shaping growth trajectories. We suggest that the vast amount of space suitable for marine aquaculture presents an opportunity for countries to develop aquaculture in a way that aligns with their economic, environmental and social objectives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Global hotspots for finfish aquaculture.
Fig. 2: Potential growing area for bivalves by country.
Fig. 3: Percent of each country’s EEZ required for finfish aquaculture to supply its current seafood consumption.
Fig. 4: Marine aquaculture production and potential.

References

  1. 1.

    World Population Prospects: The 2015 Revision, Key Findings and Advance Tables (United Nations Department of Economic and Social Affairs, 2015).

  2. 2.

    Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    The State of World Fisheries and Aquaculture 2016: Contributing to Food Security and Nutrition for All (Food and Agriculture Organization, 2016).

  4. 4.

    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. The ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Pelletier, N. & Tyedmers, P. Forecasting potential global environmental costs of livestock production 2000–2050. Proc. Natl Acad. Sci. USA 107, 18371–18374 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Lovatelli, A., Aguilar-Manjarrez, J. & Soto, D. Expanding Mariculture Farther Offshore: Technical, Environmental, Spatial and Governance Challenges Technical Workshop 73 (FAO Fisheries and Aquaculture Department, 2013).

  7. 7.

    Merino, G. et al. Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Glob. Environ. Chang. 22, 795–806 (2012).

    Article  Google Scholar 

  8. 8.

    Hall, S. J., Delaporte, A., Phillips, M. J., Beveridge, M. & O’Keefe, M. Blue Frontiers: Managing the Environmental Costs of Aquaculture (The WorldFish Center, Penang, Malaysia, 2011).

    Google Scholar 

  9. 9.

    Tacon, A. G. J. & Metian, M. Fish matters: importance of aquatic foods in human nutrition and global food supply. Rev. Fish. Sci. 21, 22–38 (2016).

    Article  CAS  Google Scholar 

  10. 10.

    Campbell, B. & Pauly, D. Mariculture: a global analysis of production trends since 1950. Mar. Policy 39, 94–100 (2013).

    Article  Google Scholar 

  11. 11.

    Primavera, J. H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 49, 531–545 (2006).

    Article  Google Scholar 

  12. 12.

    Goldburg, R. J., Elliott, M. S. & Naylor, R. L. Marine Aquaculture in the United States: Environmental Impacts and Policy Options (Pew Oceans Commission, Arlington, Virginia, 2001).

  13. 13.

    Holmer, M. Environmental issues of fish farming in offshore waters: perspectives, concerns and research needs. Aquac. Environ. Interact. 1, 57–70 (2010).

    Article  Google Scholar 

  14. 14.

    Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00154 (2017).

  15. 15.

    Troell, M. et al. Does aquaculture add resilience to the global food system? Proc. Natl Acad. Sci. USA 111, 13257–13263 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  PubMed  CAS  Google Scholar 

  17. 17.

    Kapetsky, J. M., Agular-Manjarrez, J. & Jenness, J. A Global Assessment of Offshore Mariculture Potential from a Spatial Perspective (Food and Agriculture Organization, Rome, Italy, 2013).

    Google Scholar 

  18. 18.

    Jiang, W. & Gibbs, M. T. Predicting the carrying capacity of bivalve shellfish culture using a steady, linear food web model. Aquaculture 244, 171–185 (2005).

    Article  Google Scholar 

  19. 19.

    Ferreira, J. G. et al. Analysis of coastal and offshore aquaculture: application of the FARM model to multiple systems and shellfish species. Aquaculture 289, 32–41 (2009).

    Article  Google Scholar 

  20. 20.

    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).

    Article  Google Scholar 

  21. 21.

    Pauly, D. & Munro, J. L. Once more on the comparison of growth in fish and invertebrates. Fishbyte 2, 21 (1984).

    Google Scholar 

  22. 22.

    Pauly, D., Moreau, J. & Prein, M. A comparison of overall growth performance of Tilapia in open waters and aquaculture. In Second Int. Symp. Tilapia Aquaculture 469–479 (ICLARM Conference Proceedings, 1988).

  23. 23.

    Mathews, C. P. & Samuel, M. Using the growth performance index Φ’ to choose species aquaculture: an example from Kuwait. Aquabyte 3, 2–4 (1990).

    Google Scholar 

  24. 24.

    Alvarez-Lajonchère, L. & Ibarra-Castro, L. Relationships of maximum length, length at first sexual maturity, and growth performance index in nature with absolute growth rates of intensive cultivation of some tropical marine fish. J. World Aquac. Soc. 43, 607–620 (2012).

    Article  Google Scholar 

  25. 25.

    Duarte, C. M., Marba, N. & Holmer, M. Rapid domestication of marine species. Science 316, 382–383 (2007).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Froehlich, H. E., Gentry, R. R., Rust, M. B., Grimm, D. & Halpern, S. Public perceptions of aquaculture: evaluating spatiotemporal patterns of sentiment around the world. PLoS ONE 12, e0169281 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  28. 28.

    Edwards, P. Aquaculture environment interactions: past, present and likely future trends. Aquaculture 447, 2–14 (2015).

    Article  Google Scholar 

  29. 29.

    O’Leary, B. C. et al. Effective coverage targets for ocean protection. Conserv. Lett. 9, 398–404 (2016).

    Article  Google Scholar 

  30. 30.

    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Halpern, B. S. et al. Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat. Commun. 6, 7615 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Sanchez-Jerez, P. et al. Aquaculture’s struggle for space: the need for coastal spatial planning and the potential benefits of allocated zones for aquaculture (AZAs) to avoid conflict and promote sustainability. Aquac. Environ. Interact. 8, 41–54 (2016).

    Article  Google Scholar 

  33. 33.

    Halpern, B. S. et al. An index to assess the health and benefits of the global ocean. Nature 488, 615–620 (2012).

    Article  PubMed  CAS  Google Scholar 

  34. 34.

    FAO Global Aquaculture Production Statistics Database Updated to 2013: Summary Information (FAO, 2015).

  35. 35.

    Krause, G. et al. A revolution without people? Closing the people–policy gap in aquaculture development. Aquaculture 447, 44–55 (2015).

    Article  Google Scholar 

  36. 36.

    Knapp, G. & Rubino, M. C. The political economics of marine aquaculture in the United States. Rev. Fish. Sci. Aquac. 24, 213–229 (2016).

    Article  Google Scholar 

  37. 37.

    Klinger, D. & Naylor, R. L. Searching for solutions in aquaculture: charting a sustainable course. Annu. Rev. Environ. Resour. 37, 247–276 (2012).

    Article  Google Scholar 

  38. 38.

    Bell, J. D. et al. Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nat. Clim. Chang. 3, 591–599 (2013).

    Article  Google Scholar 

  39. 39.

    Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Chang. Biol. 16, 24–35 (2010).

    Article  Google Scholar 

  40. 40.

    Nguyen, H., Hien, P., Nang, T. & Lebailly, P. Vietnam’s fisheries and aquaculture development’s policy: are exports performance targets sustainable? In ISSAAS 2016: Int. Congress General Meeting (2016).

  41. 41.

    Golden, C. et al. Fall in fish catch threatens human health. Nature 534, 317–320 (2016).

    Article  PubMed  Google Scholar 

  42. 42.

    Belton, B., Bush, S. R. & Little, D. C. Are the farmed fish just for the wealthy? Nature 538, 171 (2016).

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Béné, C. et al. Contribution of fisheries and aquaculture to food security and poverty reduction: assessing the current evidence. World Dev. 79, 177–196 (2016).

    Article  Google Scholar 

  44. 44.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015).

  45. 45.

    Fairbanks, L. Moving mussels offshore? Perceptions of offshore aquaculture policy and expansion in New England. Ocean Coast. Manag. 130, 1–12 (2016).

    Article  Google Scholar 

  46. 46.

    Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl Acad. Sci. USA 106, 15103–15110 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Ramos, J. et al. Perceived impact of offshore aquaculture area on small-scale fisheries: a fuzzy logic model approach. Fish. Res. 170, 217–227 (2015).

    Article  Google Scholar 

  48. 48.

    R Core Team R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016); https://www.r-project.org/.

  49. 49.

    Locarnini, R. A. et al. World Ocean Atlas 2009 Volume 1: Temperature (2010); ftp://ftp.nodc.noaa.gov/pub/WOA09/DOC/woa09_vol1_text.pdf.

  50. 50.

    Rubino, M. Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities (US Department of Commerce National Oceanic and Atmospheric Administration, 2008).

  51. 51.

    Harris, J. O., Maguire, G., Edwards, S. J. & Johns, D. R. Low dissolved oxygen reduces growth rate and oxygen consumption rate of juvenile greenlip abalone, Haliotis laevigata Donovan. Aquaculture 174, 265–278 (1999).

    Article  Google Scholar 

  52. 52.

    Diaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30, 275–281 (2001).

    Article  PubMed  CAS  Google Scholar 

  53. 53.

    Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl Acad. Sci. USA 105, 15452–15457 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Blanchette, C. A., Helmuth, B. & Gaines, S. D. Spatial patterns of growth in the mussel, Mytilus californianus, across a major oceanographic and biogeographic boundary at Point Conception, California, USA. J. Exp. Mar. Bio. Ecol. 340, 126–148 (2007).

    Article  Google Scholar 

  55. 55.

    Page, H. M. & Hubbard, D. M. Temporal and spatial patterns of growth in mussels Mytilus edulis on an offshore platform: relationships to water temperature and food availability. J. Exp. Mar. Bio. Ecol. 111, 159–179 (1987).

    Article  Google Scholar 

  56. 56.

    Saxby, S. A. in A Review of Food Availability, Sea Water Characteristics and Bivalve Growth Performance at Coastal Culture Sites in Temperate and Warm Temperate Regions of the World 132 (Department of Fisheries, Western Australia, 2002).

  57. 57.

    Inglis, G. J., Hayden, B. J. & Ross, A. H. An Overview of Factors Affecting the Carrying Capacity of Coastal Embayments for Mussel Culture (National Institute of Water & Atmospheric Research, 2000).

  58. 58.

    Langan, R. The role of marine aquaculture in meeting the future demand for animal protein. J. Foodserv. 19, 227–233 (2008).

    Article  Google Scholar 

  59. 59.

    Puniwai, N. et al. Development of a GIS-based tool for aquaculture siting. ISPRS Int. J. Geoinf. 3, 800–816 (2014).

    Article  Google Scholar 

  60. 60.

    Kaiser, M. J., Snyder, B. & Yu, Y. A review of the feasibility, costs, and benefits of platform-based open ocean aquaculture in the Gulf of Mexico. Ocean Coast. Manag. 54, 721–730 (2011).

    Article  Google Scholar 

  61. 61.

    IUCN & UNEP World Database on Protected Areas (2009); http://www.wdpa.org/.

  62. 62.

    Day, J. et al. Guidelines for Applying the IUCN Protected Area Management Categories to Marine Protected Areas (IUCN, 2012).

  63. 63.

    Wood, L. J., Fish, L., Laughren, J. & Pauly, D. Assessing progress towards global marine protection targets: shortfalls in information and action. Oryx 42, 340–351 (2008).

    Article  Google Scholar 

  64. 64.

    Keys, A. B. The weight–length relation in fishes. Proc. Natl Acad. Sci. USA 14, 922–925 (1928).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. 65.

    Froese, R. Cube law, condition factor and weight–length relationships: history, meta-analysis and recommendations. J. Appl. Ichthyol. 22, 241–253 (2006).

    Article  Google Scholar 

  66. 66.

    Gaspar, M. B., Santos, M. N. & Vasconcelos, P. Weight–length relationships of 25 bivalve species (Mollusca: Bivalvia) from the Algarve coast (southern Portugal). J. Mar. Biol. Assoc. UK 81, 805–807 (2001).

    Article  Google Scholar 

  67. 67.

    Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 Laying Down Detailed Rules for the Implementation of Council Regulation (EC) No 834/2007 15–34 (European Union, 2009).

  68. 68.

    Sim-Smith, C. & Forsythe, A. Comparison of the International Regulations and Best Management Practices for Marine Finfish Farming (New Zealand Ministry for Primary Industries, 2013).

  69. 69.

    FAO FishStatJ—Software for Fishery Statistical Time Series v.2.11.4 (2014); http://www.fao.org/fishery/statistics/software/fishstatj/en.

Download references

Acknowledgements

This research was conducted by the Open-Ocean Aquaculture Expert Working Group supported by the Science for Nature and People Partnership—a partnership of The Nature Conservancy, the Wildlife Conservation Society and the National Center for Ecological Analysis and Synthesis (proposal SNP015). The conclusions drawn in this manuscript do not necessarily reflect those of the author-associated organizations or their agencies. S.D.G. and R.R.G. acknowledge support from the Waitt Foundation. The authors thank R. Naylor and M. Velings for comments on an early draft of the manuscript.

Author information

Affiliations

Authors

Contributions

B.S.H. and R.R.G. conceived the initial study. R.R.G., H.E.F. and B.S.H. developed the research and methodology with critical input and insight from D.G., P.K, M.P., M.R. and S.D.G. R.R.G. and H.E.F. collected and analysed the data. All authors interpreted the results and implications. R.R.G., H.E.F., B.S.H. and S.D.G. produced the figures. R.R.G. drafted the manuscript with significant input and revisions from all authors.

Corresponding author

Correspondence to Rebecca R. Gentry.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–8 and Supplementary Tables 1–4

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gentry, R.R., Froehlich, H.E., Grimm, D. et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol 1, 1317–1324 (2017). https://doi.org/10.1038/s41559-017-0257-9

Download citation

Further reading