Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improvement of individual camouflage through background choice in ground-nesting birds

Abstract

Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal’s own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modelling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few centimetres and 5 m from the nest, and compared with other sites chosen by conspecifics) and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Images of camouflaged birds and eggs, including to predator vision.
Fig. 2: Analysis of egg camouflage between chosen nest sites and potential other sites.
Fig. 3: Model estimates of planned comparisons comparing the match between each subject (egg or adult bird) and its chosen nest background with its match to backgrounds chosen by its conspecifics.
Fig. 4: Model estimates of planned comparisons in pattern, luminance and colour camouflage matching between zones with 95% confidence intervals.

Similar content being viewed by others

References

  1. Cott, H. B. Adaptive Coloration in Animals (Methuen & Co, London, 1940).

    Google Scholar 

  2. Diamond, J. & Bond, A. B. Concealing Coloration in Animals (Harvard Univ. Press, Harvard, 2013).

    Book  Google Scholar 

  3. Kettlewell, H. B. D. Selection experiments on industrial melanism in the Lepidoptera. Heredity 9, 323–342 (1955).

    Article  Google Scholar 

  4. Stevens, M. Cheats and Deceits: How Animals and Plants Exploit and Mislead (Oxford Univ. Press, Oxford, 2016).

    Google Scholar 

  5. Stevens, M. & Merilaita, S. Animal camouflage: current issues and new perspectives. Phil. Trans. R. Soc. B 364, 423–427 (2009).

    Article  PubMed  Google Scholar 

  6. Thayer, G. H. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries (Macmillan, New York, 1909).

    Book  Google Scholar 

  7. Wallace, A. R. Darwinism. An Exposition of the Theory of Natural Selection With Some of its Applications (Macmillan, London, 1889).

    Google Scholar 

  8. Stevens, M. & Merilaita, S. Animal Camouflage: From Mechanisms to Function (Cambridge Univ. Press, Cambridge, 2011).

    Book  Google Scholar 

  9. Bond, A. B. & Kamil, A. C. Visual predators select for crypticity and polymorphism in virtual prey. Nature 415, 609–613 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).

    Article  PubMed  CAS  Google Scholar 

  11. Merilaita, S. & Lind, J. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc. B 272, 665–670 (2005).

    Article  PubMed  Google Scholar 

  12. Merilaita, S., Tuomi, J. & Jormalainen, V. Optimization of cryptic coloration in heterogeneous habitats. Biol. J. Linn. Soc. 67, 151–161 (1999).

    Article  Google Scholar 

  13. Rowland, H. M., Cuthill, I. C., Harvey, I. F., Speed, M. P. & Ruxton, G. D. Can’t tell the caterpillars from the trees: countershading enhances survival in a woodland. Proc. R. Soc. B 275, 2539–2545 (2008).

    Article  PubMed  Google Scholar 

  14. Schaefer, M. H. & Stobbe, N. Disruptive coloration provides camouflage independent of background matching. Proc. R. Soc. B 273, 2427–2432 (2006).

    Article  PubMed  Google Scholar 

  15. Stevens, M. & Cuthill, I. C. Disruptive coloration, crypsis and edge detection in early visual processing. Proc. R. Soc. B 273, 2141–2147 (2006).

    Article  PubMed  Google Scholar 

  16. Troscianko, J., Lown, A. E., Hughes, A. E. & Stevens, M. Defeating crypsis: detection and learning of camouflage strategies. PLoS ONE 8, e73733 (2013).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Webster, R. J., Hassall, C., Herdman, C. M. & Sherratt, T. N. Disruptive camouflage impairs object recognition. Biol. Lett. 9, 20130501 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value, and ecological significance. Phil. Trans. R. Soc. B 372, 20160342 (2017).

    Article  PubMed  Google Scholar 

  19. Nachman, M. W., Hoekstra, H. E. & D’Agostino, S. L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl Acad. Sci. USA 100, 5268–5273 (2003).

    Article  PubMed  CAS  Google Scholar 

  20. Rosenblum, E. B. Convergent evolution and divergent selection: lizards at the White Sands ecotone. Am. Nat. 167, 1–15 (2006).

    Article  PubMed  Google Scholar 

  21. Wallace, A. R. Mimicry and other protective resemblances among animals. Westminster Rev. 1 (July), 1–43 (1867).

    Google Scholar 

  22. Merilaita, S., Lyytinen, A. & Mappes, J. Selection for cryptic coloration in a visually heterogeneous habitat. Proc. R. Soc. Lond. B 268, 1925–1929 (2001).

    Article  CAS  Google Scholar 

  23. Kettlewell, H. B. D. Recognition of appropriate backgrounds by the pale and black phases of Lepidoptera. Nature. 175, 943–944 (1955).

    Article  PubMed  CAS  Google Scholar 

  24. Endler, J. A. Progressive background matching in moths, and a quantitative measure of crypsis. Biol. J. Linn. Soc. 22, 187–231 (1984).

    Article  Google Scholar 

  25. Kettlewell, H. B. D. & Conn, D. L. T. Further background-choice experiments on cryptic Lepidoptera. J. Zool. 181, 371–376 (1977).

    Article  Google Scholar 

  26. Sargent, T. D. Background selections of geometrid and noctuid moths. Science 154, 1674–1675 (1966).

    Article  Google Scholar 

  27. Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Individual quail select egg-laying substrate providing optimal camouflage for their egg phenotype. Curr. Biol. 23, 260–264 (2013).

    Article  PubMed  CAS  Google Scholar 

  28. Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Marshall, K. L. A. & Stevens, M. Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behav. Ecol. 25, 1325–1337 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duarte, R. C., Stevens, M. & Flores, A. A. V. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evol. Biol. 16, 218 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gilby, B. L. et al. Colour change in a filefish (Monacanthus chinensis) faced with the challenge of changing backgrounds. Environ. Biol. Fish. 98, 2021–2029 (2015).

    Article  Google Scholar 

  32. Sargent, T. D. Behavioural adaptations of cryptic moths III: resting attitutes of two bark-like species, Melanolophia canadaria and Catocala ultronia. Anim. Behav. 17, 670–672 (1969).

    Article  Google Scholar 

  33. Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through an active choice of a resting spot and body orientation in moths. J. Evol. Biol. 25, 1695–1702 (2012).

    Article  PubMed  Google Scholar 

  34. Kang, C. K., Stevens, M., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav. Ecol. 26, 45–54 (2015).

    Article  Google Scholar 

  35. Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Moths on tree trunks seek out more cryptic positions when their current crypticity is low. Anim. Behav. 86, 587–594 (2013).

    Article  Google Scholar 

  36. Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R. Soc. B 279, 84–90 (2012).

    Article  PubMed  Google Scholar 

  37. Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Wilson-Aggarwal, J., Troscianko, J., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).

    Article  PubMed  Google Scholar 

  39. Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).

    Article  Google Scholar 

  40. Stoddard, M. C. & Stevens, M. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird’s eye. Proc. R. Soc. B 277, 1387–1393 (2010).

    Article  PubMed  Google Scholar 

  41. Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B 265, 351–358 (1998).

    Article  CAS  Google Scholar 

  42. Nosil, P. & Crespi, B. J. Experimental evidence that predation promotes divergence in adaptive radiation. Proc. Natl Acad. Sci. USA 103, 9090–9095 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. Stevens, M., Lown, A. E. & Wood, L. E. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats. PLoS ONE 9, e115586 (2014).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Dawkins, R. The Extended Phenotype (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  45. Troscianko, J., Wilson-Aggarwal, J., Spottiswoode, C. N. & Stevens, M. Nest covering in plovers: how modifying the visual environment influences egg camouflage. Ecol. Evol. 6, 7536–7545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gosler, A. G., Barnett, P. R. & Reynolds, S. J. Inheritance and variation in eggshell patterning in the great tit Parus major. Proc. R. Soc. Lond. B 267, 2469–2473 (2000).

    Article  CAS  Google Scholar 

  47. Rothstein, S. I. Mechanisms of avian egg-recognition: do birds know their own eggs? Anim. Behav. 23, 268–278 (1975).

    Article  Google Scholar 

  48. Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).

    Article  PubMed  Google Scholar 

  49. Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature. 362, 149–152 (1993).

    Article  Google Scholar 

  50. Stevens, M. & Ruxton, G. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B 279, 417–426 (2012).

    Article  PubMed  Google Scholar 

  51. Troscianko, J. & Stevens, M. Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stevens, M., Lown, A. E. & Wood, L. E. Colour change and camouflage in juvenile shore crabs Carcinus maenas. Front. Ecol. Evol. 2, 14 (2014).

    Article  Google Scholar 

  53. Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: towards visual system dependent methods. Int. J. Primatol. 30, 893–917 (2009).

    Article  Google Scholar 

  54. Calderone, J. B. & Jacobs, G. H. Spectral properties and retinal distribution of ferret cones. Visual Neurosci. 20, 11–17 (2003).

    Article  Google Scholar 

  55. Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Visual Neurosci. 17, 509–528 (2000).

    Article  CAS  Google Scholar 

  56. Douglas, R. H. & Jeffery, G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B 281, 20132995 (2014).

    Article  PubMed  CAS  Google Scholar 

  57. Jacobs, G. H., Neitz, J., Crognale, M. A. & Brammer, G. L. Spectral sensitivity of vervet monkeys (Cercopithecus aethiops sabaeus) and the issue of catarrhine trichromacy. Am. J. Primatol. 23, 185–195 (1991).

    Article  Google Scholar 

  58. Stockman, A. & Sharpe, L. T. The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation-the passerines. BMC Evol. Biol. 11, 313 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hart, N. S. Vision in the peafowl (Aves: Pavo cristatus). J. Exp. Biol. 205, 3925–3935 (2002).

    PubMed  Google Scholar 

  61. Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. 22, 2060–2071 (2005).

    Article  CAS  Google Scholar 

  62. Arnold, S. E., Faruq, S., Savolainen, V., McOwan, P. W. & Chittka, L. FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS ONE 5, e14287 (2010).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  64. R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

    Google Scholar 

  65. Troscianko, J. A simple tool for calculating egg shape, volume and surface area from digital images. Ibis 156, 874–878 (2014).

    Article  Google Scholar 

  66. Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: how to predict detectability from appearance. BMC Evol. Biol. 17, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc. R. Soc. B 272, 1745–1752 (2005).

    Article  PubMed  CAS  Google Scholar 

  68. Chiao, C.-C., Chubb, C., Buresch, K. C., Siemann, L. & Hanlon, R. T. The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vision Res. 49, 1647–1656 (2009).

    Article  PubMed  Google Scholar 

  69. Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).

    Article  PubMed  Google Scholar 

  70. Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models using Eigen and S4. R package v. 11-7 (R Foundation for Statistical Computing, Vienna, 2014). 

    Google Scholar 

Download references

Acknowledgements

J.T., J.K.W.-A. and M.S. were funded by a Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/J018309/1 to M.S., and a BBSRC David Phillips Research Fellowship (BB/G022887/1) to M.S. C.N.S was funded by a Royal Society Dorothy Hodgkin Fellowship, a BBSRC David Phillips Fellowship (BB/J014109/1) and the DST-NRF Centre of Excellence at the FitzPatrick Institute. In Zambia, we thank the Bruce-Miller, Duckett and Nicolle families, C. Moya and numerous other nest-finding assistants and land owners, L. Chama, and the Zambia Wildlife Authority. We also thank R. Douglas for supplying lens transmission data for the ferret.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed and conceived the study. Fieldwork was conducted by J.T., J.K.W.-A. and C.N.S. at a study site set up by C.N.S. Image analysis and vision modelling was carried out by J.T., J.K.W.-A. and M.S., and the statistical analysis primarily by J.T. M.S. wrote the initial manuscript, which was reviewed and approved by all authors prior to submission.

Corresponding author

Correspondence to Martin Stevens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Discussion

Supplementary Data

Egg microhabitat data and adult nightjar microhabitat data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stevens, M., Troscianko, J., Wilson-Aggarwal, J.K. et al. Improvement of individual camouflage through background choice in ground-nesting birds. Nat Ecol Evol 1, 1325–1333 (2017). https://doi.org/10.1038/s41559-017-0256-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0256-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing