Article | Published:

Improvement of individual camouflage through background choice in ground-nesting birds

Nature Ecology & Evolutionvolume 1pages13251333 (2017) | Download Citation


Animal camouflage is a longstanding example of adaptation. Much research has tested how camouflage prevents detection and recognition, largely focusing on changes to an animal’s own appearance over evolution. However, animals could also substantially alter their camouflage by behaviourally choosing appropriate substrates. Recent studies suggest that individuals from several animal taxa could select backgrounds or positions to improve concealment. Here, we test whether individual wild animals choose backgrounds in complex environments, and whether this improves camouflage against predator vision. We studied nest site selection by nine species of ground-nesting birds (nightjars, plovers and coursers) in Zambia, and used image analysis and vision modelling to quantify egg and plumage camouflage to predator vision. Individual birds chose backgrounds that enhanced their camouflage, being better matched to their chosen backgrounds than to other potential backgrounds with respect to multiple aspects of camouflage. This occurred at all three spatial scales tested (a few centimetres and 5 m from the nest, and compared with other sites chosen by conspecifics) and was the case for the eggs of all bird groups studied, and for adult nightjar plumage. Thus, individual wild animals improve their camouflage through active background choice, with choices highly refined across multiple spatial scales.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cott, H. B. Adaptive Coloration in Animals (Methuen & Co, London, 1940).

  2. 2.

    Diamond, J. & Bond, A. B. Concealing Coloration in Animals (Harvard Univ. Press, Harvard, 2013).

  3. 3.

    Kettlewell, H. B. D. Selection experiments on industrial melanism in the Lepidoptera. Heredity 9, 323–342 (1955).

  4. 4.

    Stevens, M. Cheats and Deceits: How Animals and Plants Exploit and Mislead (Oxford Univ. Press, Oxford, 2016).

  5. 5.

    Stevens, M. & Merilaita, S. Animal camouflage: current issues and new perspectives. Phil. Trans. R. Soc. B 364, 423–427 (2009).

  6. 6.

    Thayer, G. H. Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise Through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries (Macmillan, New York, 1909).

  7. 7.

    Wallace, A. R. Darwinism. An Exposition of the Theory of Natural Selection With Some of its Applications (Macmillan, London, 1889).

  8. 8.

    Stevens, M. & Merilaita, S. Animal Camouflage: From Mechanisms to Function (Cambridge Univ. Press, Cambridge, 2011).

  9. 9.

    Bond, A. B. & Kamil, A. C. Visual predators select for crypticity and polymorphism in virtual prey. Nature 415, 609–613 (2002).

  10. 10.

    Cuthill, I. C. et al. Disruptive coloration and background pattern matching. Nature 434, 72–74 (2005).

  11. 11.

    Merilaita, S. & Lind, J. Background-matching and disruptive coloration, and the evolution of cryptic coloration. Proc. R. Soc. B 272, 665–670 (2005).

  12. 12.

    Merilaita, S., Tuomi, J. & Jormalainen, V. Optimization of cryptic coloration in heterogeneous habitats. Biol. J. Linn. Soc. 67, 151–161 (1999).

  13. 13.

    Rowland, H. M., Cuthill, I. C., Harvey, I. F., Speed, M. P. & Ruxton, G. D. Can’t tell the caterpillars from the trees: countershading enhances survival in a woodland. Proc. R. Soc. B 275, 2539–2545 (2008).

  14. 14.

    Schaefer, M. H. & Stobbe, N. Disruptive coloration provides camouflage independent of background matching. Proc. R. Soc. B 273, 2427–2432 (2006).

  15. 15.

    Stevens, M. & Cuthill, I. C. Disruptive coloration, crypsis and edge detection in early visual processing. Proc. R. Soc. B 273, 2141–2147 (2006).

  16. 16.

    Troscianko, J., Lown, A. E., Hughes, A. E. & Stevens, M. Defeating crypsis: detection and learning of camouflage strategies. PLoS ONE 8, e73733 (2013).

  17. 17.

    Webster, R. J., Hassall, C., Herdman, C. M. & Sherratt, T. N. Disruptive camouflage impairs object recognition. Biol. Lett. 9, 20130501 (2013).

  18. 18.

    Duarte, R. C., Flores, A. A. V. & Stevens, M. Camouflage through colour change: mechanisms, adaptive value, and ecological significance. Phil. Trans. R. Soc. B 372, 20160342 (2017).

  19. 19.

    Nachman, M. W., Hoekstra, H. E. & D’Agostino, S. L. The genetic basis of adaptive melanism in pocket mice. Proc. Natl Acad. Sci. USA 100, 5268–5273 (2003).

  20. 20.

    Rosenblum, E. B. Convergent evolution and divergent selection: lizards at the White Sands ecotone. Am. Nat. 167, 1–15 (2006).

  21. 21.

    Wallace, A. R. Mimicry and other protective resemblances among animals. Westminster Rev. 1 (July), 1–43 (1867).

  22. 22.

    Merilaita, S., Lyytinen, A. & Mappes, J. Selection for cryptic coloration in a visually heterogeneous habitat. Proc. R. Soc. Lond. B 268, 1925–1929 (2001).

  23. 23.

    Kettlewell, H. B. D. Recognition of appropriate backgrounds by the pale and black phases of Lepidoptera. Nature. 175, 943–944 (1955).

  24. 24.

    Endler, J. A. Progressive background matching in moths, and a quantitative measure of crypsis. Biol. J. Linn. Soc. 22, 187–231 (1984).

  25. 25.

    Kettlewell, H. B. D. & Conn, D. L. T. Further background-choice experiments on cryptic Lepidoptera. J. Zool. 181, 371–376 (1977).

  26. 26.

    Sargent, T. D. Background selections of geometrid and noctuid moths. Science 154, 1674–1675 (1966).

  27. 27.

    Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Individual quail select egg-laying substrate providing optimal camouflage for their egg phenotype. Curr. Biol. 23, 260–264 (2013).

  28. 28.

    Marshall, K. L. A., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 19815 (2016).

  29. 29.

    Marshall, K. L. A. & Stevens, M. Wall lizards display conspicuous signals to conspecifics and reduce detection by avian predators. Behav. Ecol. 25, 1325–1337 (2014).

  30. 30.

    Duarte, R. C., Stevens, M. & Flores, A. A. V. Shape, colour plasticity, and habitat use indicate morph-specific camouflage strategies in a marine shrimp. BMC Evol. Biol. 16, 218 (2016).

  31. 31.

    Gilby, B. L. et al. Colour change in a filefish (Monacanthus chinensis) faced with the challenge of changing backgrounds. Environ. Biol. Fish. 98, 2021–2029 (2015).

  32. 32.

    Sargent, T. D. Behavioural adaptations of cryptic moths III: resting attitutes of two bark-like species, Melanolophia canadaria and Catocala ultronia. Anim. Behav. 17, 670–672 (1969).

  33. 33.

    Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through an active choice of a resting spot and body orientation in moths. J. Evol. Biol. 25, 1695–1702 (2012).

  34. 34.

    Kang, C. K., Stevens, M., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav. Ecol. 26, 45–54 (2015).

  35. 35.

    Kang, C. K., Moon, J. Y., Lee, S. I. & Jablonski, P. G. Moths on tree trunks seek out more cryptic positions when their current crypticity is low. Anim. Behav. 86, 587–594 (2013).

  36. 36.

    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R. Soc. B 279, 84–90 (2012).

  37. 37.

    Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).

  38. 38.

    Wilson-Aggarwal, J., Troscianko, J., Stevens, M. & Spottiswoode, C. N. Escape distance in ground-nesting birds differs with individual level of camouflage. Am. Nat. 188, 231–239 (2016).

  39. 39.

    Stevens, M., Párraga, C. A., Cuthill, I. C., Partridge, J. C. & Troscianko, T. S. Using digital photography to study animal coloration. Biol. J. Linn. Soc. 90, 211–237 (2007).

  40. 40.

    Stoddard, M. C. & Stevens, M. Pattern mimicry of host eggs by the common cuckoo, as seen through a bird’s eye. Proc. R. Soc. B 277, 1387–1393 (2010).

  41. 41.

    Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B 265, 351–358 (1998).

  42. 42.

    Nosil, P. & Crespi, B. J. Experimental evidence that predation promotes divergence in adaptive radiation. Proc. Natl Acad. Sci. USA 103, 9090–9095 (2006).

  43. 43.

    Stevens, M., Lown, A. E. & Wood, L. E. Camouflage and individual variation in shore crabs (Carcinus maenas) from different habitats. PLoS ONE 9, e115586 (2014).

  44. 44.

    Dawkins, R. The Extended Phenotype (Oxford Univ. Press, Oxford, 1989).

  45. 45.

    Troscianko, J., Wilson-Aggarwal, J., Spottiswoode, C. N. & Stevens, M. Nest covering in plovers: how modifying the visual environment influences egg camouflage. Ecol. Evol. 6, 7536–7545 (2016).

  46. 46.

    Gosler, A. G., Barnett, P. R. & Reynolds, S. J. Inheritance and variation in eggshell patterning in the great tit Parus major. Proc. R. Soc. Lond. B 267, 2469–2473 (2000).

  47. 47.

    Rothstein, S. I. Mechanisms of avian egg-recognition: do birds know their own eggs? Anim. Behav. 23, 268–278 (1975).

  48. 48.

    Doucet, S. M., Mennill, D. J. & Hill, G. E. The evolution of signal design in manakin plumage ornaments. Am. Nat. 169, S62–S80 (2007).

  49. 49.

    Marchetti, K. Dark habitats and bright birds illustrate the role of the environment in species divergence. Nature. 362, 149–152 (1993).

  50. 50.

    Stevens, M. & Ruxton, G. D. Linking the evolution and form of warning coloration in nature. Proc. R. Soc. B 279, 417–426 (2012).

  51. 51.

    Troscianko, J. & Stevens, M. Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).

  52. 52.

    Stevens, M., Lown, A. E. & Wood, L. E. Colour change and camouflage in juvenile shore crabs Carcinus maenas. Front. Ecol. Evol. 2, 14 (2014).

  53. 53.

    Stevens, M., Stoddard, M. C. & Higham, J. P. Studying primate color: towards visual system dependent methods. Int. J. Primatol. 30, 893–917 (2009).

  54. 54.

    Calderone, J. B. & Jacobs, G. H. Spectral properties and retinal distribution of ferret cones. Visual Neurosci. 20, 11–17 (2003).

  55. 55.

    Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Visual Neurosci. 17, 509–528 (2000).

  56. 56.

    Douglas, R. H. & Jeffery, G. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. Proc. R. Soc. B 281, 20132995 (2014).

  57. 57.

    Jacobs, G. H., Neitz, J., Crognale, M. A. & Brammer, G. L. Spectral sensitivity of vervet monkeys (Cercopithecus aethiops sabaeus) and the issue of catarrhine trichromacy. Am. J. Primatol. 23, 185–195 (1991).

  58. 58.

    Stockman, A. & Sharpe, L. T. The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res. 40, 1711–1737 (2000).

  59. 59.

    Ödeen, A., Håstad, O. & Alström, P. Evolution of ultraviolet vision in the largest avian radiation-the passerines. BMC Evol. Biol. 11, 313 (2011).

  60. 60.

    Hart, N. S. Vision in the peafowl (Aves: Pavo cristatus). J. Exp. Biol. 205, 3925–3935 (2002).

  61. 61.

    Lovell, P. G. et al. Stability of the color-opponent signals under changes of illuminant in natural scenes. J. Opt. Soc. Am. 22, 2060–2071 (2005).

  62. 62.

    Arnold, S. E., Faruq, S., Savolainen, V., McOwan, P. W. & Chittka, L. FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS ONE 5, e14287 (2010).

  63. 63.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

  64. 64.

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2016).

  65. 65.

    Troscianko, J. A simple tool for calculating egg shape, volume and surface area from digital images. Ibis 156, 874–878 (2014).

  66. 66.

    Troscianko, J., Skelhorn, J. & Stevens, M. Quantifying camouflage: how to predict detectability from appearance. BMC Evol. Biol. 17, 7 (2017).

  67. 67.

    Osorio, D. & Vorobyev, M. Photoreceptor spectral sensitivities in terrestrial animals: adaptations for luminance and colour vision. Proc. R. Soc. B 272, 1745–1752 (2005).

  68. 68.

    Chiao, C.-C., Chubb, C., Buresch, K. C., Siemann, L. & Hanlon, R. T. The scaling effects of substrate texture on camouflage patterning in cuttlefish. Vision Res. 49, 1647–1656 (2009).

  69. 69.

    Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).

  70. 70.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models using Eigen and S4. R package v. 11-7 (R Foundation for Statistical Computing, Vienna, 2014). 

Download references


J.T., J.K.W.-A. and M.S. were funded by a Biotechnology and Biological Sciences Research Council (BBSRC) grant BB/J018309/1 to M.S., and a BBSRC David Phillips Research Fellowship (BB/G022887/1) to M.S. C.N.S was funded by a Royal Society Dorothy Hodgkin Fellowship, a BBSRC David Phillips Fellowship (BB/J014109/1) and the DST-NRF Centre of Excellence at the FitzPatrick Institute. In Zambia, we thank the Bruce-Miller, Duckett and Nicolle families, C. Moya and numerous other nest-finding assistants and land owners, L. Chama, and the Zambia Wildlife Authority. We also thank R. Douglas for supplying lens transmission data for the ferret.

Author information


  1. Centre for Ecology & Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK

    • Martin Stevens
    • , Jolyon Troscianko
    •  & Jared K. Wilson-Aggarwal
  2. Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK

    • Claire N. Spottiswoode
  3. DST-NRF Centre of Excellence at the FitzPatrick Institute of African Ornithology, University of Cape Town, Rondebosch, 7701, South Africa

    • Claire N. Spottiswoode


  1. Search for Martin Stevens in:

  2. Search for Jolyon Troscianko in:

  3. Search for Jared K. Wilson-Aggarwal in:

  4. Search for Claire N. Spottiswoode in:


All authors designed and conceived the study. Fieldwork was conducted by J.T., J.K.W.-A. and C.N.S. at a study site set up by C.N.S. Image analysis and vision modelling was carried out by J.T., J.K.W.-A. and M.S., and the statistical analysis primarily by J.T. M.S. wrote the initial manuscript, which was reviewed and approved by all authors prior to submission.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Martin Stevens.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Discussion

  2. Supplementary Data

    Egg microhabitat data and adult nightjar microhabitat data

About this article

Publication history





Further reading