Anatomical integration of the sacral–hindlimb unit coordinated by GDF11 underlies variation in hindlimb positioning in tetrapods

  • Nature Ecology & Evolution 113921399 (2017)
  • doi:10.1038/s41559-017-0247-y
  • Download Citation
Published online:


Elucidating how body parts from different primordia are integrated during development is essential for understanding the nature of morphological evolution. In tetrapod evolution, while the position of the hindlimb has diversified along with the vertebral formula, the mechanism responsible for this coordination has not been well understood. However, this synchronization suggests the presence of an evolutionarily conserved developmental mechanism that coordinates the positioning of the hindlimb skeleton derived from the lateral plate mesoderm with that of the sacral vertebrae derived from the somites. Here we show that GDF11 secreted from the posterior axial mesoderm is a key factor in the integration of sacral vertebrae and hindlimb positioning by inducing Hox gene expression in two different primordia. Manipulating the onset of GDF11 activity altered the position of the hindlimb in chicken embryos, indicating that the onset of Gdf11 expression is responsible for the coordinated positioning of the sacral vertebrae and hindlimbs. Through comparative analysis with other vertebrate embryos, we also show that each tetrapod species has a unique onset timing of Gdf11 expression, which is tightly correlated with the anteroposterior levels of the hindlimb bud. We conclude that the evolutionary diversity of hindlimb positioning resulted from heterochronic shifts in Gdf11 expression, which led to coordinated shifts in the sacral–hindlimb unit along the anteroposterior axis.

  • Subscribe to Nature Ecology & Evolution for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    Owen, R. Descriptive Catalogue of the Osteological Series contained in the Museum of the Royal College of Surgeons of England (Royal College of Surgeons, London, 1853).

  2. 2.

    Romer, A. S. (ed.) in The Vertebrate Body 3rd edn, Ch. 7, 145–218 (W. B. Saunders, London, 1962).

  3. 3.

    Mallo, M., Vinagre, T. & Carapuço, M. The road to the vertebral formula. Int. J. Dev. Biol. 53, 1469–1481 (2009).

  4. 4.

    Harrison, R. G. Experiments on the development of the limbs in Amphibia. Proc. Natl Acad. Sci. USA 1, 539–544 (1915).

  5. 5.

    Chevallier, A. Origine des centures scapulaires et pelviennes chez l’embryon d’oiseau. J. Embryol. Exp. Morph. 42, 275–292 (1977).

  6. 6.

    Duboc, V. & Logan, M. P. O. Regulation of limb bud initiation and limb-type morphology. Dev. Dyn. 240, 1017–1027 (2011).

  7. 7.

    Andrews, S. M. & Westoll, T. S. The postcranial skeleton of Eusthenopteron foodi Whiteaves. Trans. R. Soc. Edinb. 68, 207–329 (1970).

  8. 8.

    Millot, J. & Anthony, J. Anatomie de Latimeria chalumnae. Tome 1. Squelette, Muscles et Formations de Soutien (CNRS, Paris, France, 1958).

  9. 9.

    Arratia, G., Schultze, H. P. & Casciotta, J. Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. J. Morphol. 250, 101–172 (2001).

  10. 10.

    Coates, M. I. The Devonian tetrapod Acanthostega gunnari Jarvik: postcranial anatomy, basal tetrapod relationships and patterns of skeletal evolution. Trans. R. Soc. Edinb. 87, 363–421 (1996).

  11. 11.

    Ahlberg, P. E., Clack, J. A. & Blom, H. The axial skeleton of the Devonian tetrapod Ichthyostega. Nature 437, 137–140 (2005).

  12. 12.

    Shubin, N. H., Daeschler, E. B. & Jenkins, F. A. Jr. Pelvic girdle and fin of Tiktaalik roseae. Proc. Natl Acad. Sci. USA 111, 893–899 (2014).

  13. 13.

    Narita, Y. & Kuratani, S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J. Exp. Zool. B Mol. Dev. Evol. 304B, 91–106 (2005).

  14. 14.

    Pinot, M. [The role of the somitic mesoderm in the early morphogenesis of the limbs in the fowl embryo]. J. Embryol. Exp. Morphol. 23, 109–151 (1970).

  15. 15.

    Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

  16. 16.

    Wellik, D. M. & Capecchi, M. R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science 301, 363–367 (2003).

  17. 17.

    Nishimoto, S., Minguillon, C., Wood, S. & Logan, M. P. O. A combination of activation and repression by a colinear Hox code controls forelimb-restricted expression of Tbx5 and reveals Hox protein specificity. PLoS Genet. 10, e1004245 (2014).

  18. 18.

    McPherron, A. C., Lawler, A. M. & Lee, S. J. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat. Genet. 22, 260–264 (1999).

  19. 19.

    Takeuchi, J. K. et al. Tbx5 and Tbx4 genes determine the wing/leg identity of limb buds. Nature 398, 810–814 (1999).

  20. 20.

    Andersson, O., Reissmann, E. & Ibáñez, C. F. Growth differentiation factor 11 signals through the transforming growth factor-β receptor ALK5 to regionalize the anterior–posterior axis. EMBO Rep. 7, 831–837 (2006).

  21. 21.

    Chapman, S. C., Collignon, J., Schoenwolf, G. C. & Lumsden, A. Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220, 284–289 (2001).

  22. 22.

    Itou, J. et al. Islet1 regulates establishment of the posterior hindlimb field upstream of the Hand2Shh morphoregulatory gene network in mouse embryos. Development 139, 1620–1629 (2012).

  23. 23.

    Ohuchi, H. et al. The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124, 2235–2244 (1997).

  24. 24.

    Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laexis (Daudin) (Garland Publishing, New York and London, 1994).

  25. 25.

    Jurberg, A. D., Aires, R., Varela-Lasheras, I., Nóvoa, A. & Mallo, M. Switching axial progenitors from producing trunk to tail tissues in vertebrate embryos. Dev. Cell 25, 451–462 (2013).

  26. 26.

    Liu, J. P. The function of growth/differentiation factor 11 (Gdf11) in rostrocaudal patterning of the developing spinal cord. Development 133, 2865–2874 (2006).

  27. 27.

    Tschopp, P. et al. A relative shift in cloacal location repositions external genitalia in amniote evolution. Nature 516, 391–394 (2014).

  28. 28.

    Murata, Y. et al. Allometric growth of the trunk leads to the rostral shift of the pelvic fin in teleost fishes. Dev. Biol. 347, 236–245 (2010).

  29. 29.

    Morin-Kensicki, E. M., Melancon, E. & Eisen, J. S. Segmental relationship between somites and vertebral column in zebrafish. Development 129, 3851–3860 (2002).

  30. 30.

    Watanabe, M. & Whitman, M. FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126, 5621–5634 (1999).

  31. 31.

    Tokita, M. & Kuratani, S. Normal embryonic stages of the Chinese softshelled turtle Pelodiscus sinensis (Trionychidae). Zoolog. Sci. 18, 705–715 (2001).

  32. 32.

    Matsubara, Y., Kuroiwa, A. & Suzuki, T. Efficient harvesting methods for early-stage snake and turtle embryos. Dev. Growth Differ. 58, 241–249 (2016).

  33. 33.

    Kaufman, M. H. The Atlas of Mouse Development (Academic, London, 1992).

  34. 34.

    Noro, M., Uejima, A., Abe, G., Manabe, M. & Tamura, K. Normal developmental stages of the Madagascar ground gecko Paroedura pictus with special reference to limb morphogenesis. Dev. Dyn. 238, 100–109 (2009).

  35. 35.

    Hamburger, V. & Hamilton, H. L. A series of normal stages in the development of the chick embryo. 1951. Dev. Dyn. 195, 231–272 (1992).

  36. 36.

    Ainsworth, S. J., Stanley, R. L. & Evans, D. J. R. Developmental stages of the Japanese quail. J. Anat. 216, 3–15 (2010).

  37. 37.

    Nagai, H. et al. Embryonic development of the emu, Dromaius novaehollandiae. Dev. Dyn. 240, 162–175 (2011).

  38. 38.

    Matsubara, Y., Sakai, A., Kuroiwa, A. & Suzuki, T. Efficient embryonic culture method for the Japanese striped snake, Elaphe quadrivirgata, and its early developmental stages. Dev. Growth Differ. 56, 573–582 (2014).

  39. 39.

    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

  40. 40.

    Dietrich, S., Schubert, F. R. & Lumsden, A. Control of dorsoventral pattern in the chick paraxial mesoderm. Development 124, 3895–3908 (1997).

  41. 41.

    Suzuki, T., Hasso, S. M. & Fallon, J. F. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc. Natl Acad. Sci. USA 105, 4185–4190 (2008).

  42. 42.

    Tsuda, H. et al. Dorsalization of the neural tube by Xenopus tiarin, a novel patterning factor secreted by the flanking nonneural head ectoderm. Neuron 33, 515–528 (2002).

  43. 43.

    Thisse, C. & Thisse, B. High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat. Protoc. 3, 59–69 (2008).

  44. 44.

    Yokouchi, Y., Sasaki, H. & Kuroiwa, A. Homeobox gene expression correlated with the bifurcation process of limb cartilage development. Nature 353, 443–445 (1991).

  45. 45.

    Roberts, D. J. et al. Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121, 3163–3174 (1995).

  46. 46.

    Schweickert, A., Steinbeisser, H. & Blum, M. Differential gene expression of Xenopus Pitx1, Pitx2b and Pitx2c during cement gland, stomodeum and pituitary development. Mech. Dev. 17, 191–194 (2001).

  47. 47.

    Ho, D. M., Yeo, C. Y. & Whitman, M. The role and regulation of GDF11 in Smad2 activation during tailbud formation in the Xenopus embryo. Mech. Dev. 127, 485–495 (2010).

  48. 48.

    Taelman, V., Van Campenhout, C., Sölter, M., Pieler, T. & Bellefroid, E. J. The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen. Development 133, 2961–2971 (2006).

  49. 49.

    Cong, L., Hou, L., Wu, X. & Hou, J. The Gross Anatomy of Alligator sinensis Fauvel [in Chinese] (China Forestry Publishing House, Beijing, 1998).

  50. 50.

    Mivart, S. G. I. On the axial skeleton of the Struthionidae. Trans. Zool. Soc. Lond. 10, 1–52 (1877).

  51. 51.

    Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2013).

  52. 52.

    Nakaya, Y., Sukowati, E. W. & Sheng, G. Epiblast integrity requires CLASP and Dystroglycan-mediated microtubule anchoring to the basal cortex. J. Cell Biol. 202, 637–651 (2013).

  53. 53.

    Sato, Y., Yasuda, K. & Takahashi, Y. Morphological boundary forms by a novel inductive event mediated by Lunatic fringe and Notch during somitic segmentation. Development 129, 3633–3644 (2002).

  54. 54.

    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

  55. 55.

    Maddison, W. P. & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. v. 3.04 (2015).

  56. 56.

    Midford, P. E., Garland, T. & Maddison, W. P. PDAP package of Mesquite. v. 1.16 (2010).

Download references


We thank Y. Yamamoto-Shiraishi for discussions; G. Sheng for help with collecting the emu embryos; and A. Sakai for help with collecting the snake embryos. This work was supported by JST PRESTO, Grants-in-Aid for Scientific Research—KAKENHI grant numbers 2529150, 15KT0150, 16H01444 and 17H05764.

Author information

Author notes

  1. Atsushi Kuroiwa and Takayuki Suzuki jointly supervised this work.


  1. Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, 464-8602, Japan

    • Yoshiyuki Matsubara
    • , Takaya Suganuma
    • , Yuhei Kohara
    • , Tatsuya Nagai
    • , Atsushi Kuroiwa
    •  & Takayuki Suzuki
  2. Evolutionary Morphology Laboratory, Kobe, 650-0047, Japan

    • Tatsuya Hirasawa
    •  & Shigeru Kuratani
  3. Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, 980-8578, Japan

    • Shiro Egawa
    •  & Koji Tamura
  4. Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku Sendai, 980-8575, Japan

    • Ayumi Hattori


  1. Search for Yoshiyuki Matsubara in:

  2. Search for Tatsuya Hirasawa in:

  3. Search for Shiro Egawa in:

  4. Search for Ayumi Hattori in:

  5. Search for Takaya Suganuma in:

  6. Search for Yuhei Kohara in:

  7. Search for Tatsuya Nagai in:

  8. Search for Koji Tamura in:

  9. Search for Shigeru Kuratani in:

  10. Search for Atsushi Kuroiwa in:

  11. Search for Takayuki Suzuki in:


Y.M., A.K. and T.Suz. conceived the project and designed the experiments. Y.M. performed most experiments; T.H. performed the statistical analyses; S.E. collected ocelot gecko embryos; A.H. performed implantation experiments. T.Sug. and Y.K. performed the cell-tracking study for African clawed frog embryos; T.N. performed gene-expression studies; K.T. contributed ocelot gecko embryos; and Y.M., T.H., S.K., A.K and T.Suz. wrote the paper, with comments from co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Atsushi Kuroiwa or Takayuki Suzuki.

Electronic supplementary material

  1. Supplementary information

    Supplementary Texts 1–6; Supplementary Figures 1–9; Supplementary References

  2. Supplementary Video

    Animated model regarding anatomical integration of the sacral–hindlimb unit and the mechanism that brought about variation in hindlimb positioning in tetrapod evolution.