Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Diversity in stomatal function is integral to modelling plant carbon and water fluxes

Abstract

Stomatal pores on leaf surfaces respond to environmental and physiological signals to regulate leaf gas exchange. Mathematical models can predict stomatal conductance (g s), with one parameter (m or g l) reflecting the sensitivity of g s to the photosynthetic rate (A), atmospheric carbon dioxide concentration and atmospheric humidity, and a second parameter (g 0) representing the minimum g s. Such models are solved iteratively with a photosynthesis model to form the core of many models of crop or ecosystem carbon and water fluxes. For three decades, g s models have frequently been used assuming fixed parameter values for m or g 1 and g 0 across species and major plant functional types. This study of temperate tree species reveals significant interspecific variation in stomatal function. Applying species-specific parameterizations substantially reduced error in model predictions of g s by 34 to 64% and A by 52 to 60% and resulted in significant correlation between modelled and measured values. This work challenges the long-held assumption of fixed parameter values and, in doing so, suggests an approach for reducing modelling error across a wide range of ecological and agricultural applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Variation among C3 broad-leaved temperate tree species in the slope parameters of g s models.
Fig. 2: Comparison of measured versus modelled rates of A and g s using generic (m = 9.1) or species-specific parameterization.
Fig. 3: Comparison of measured versus modelled rates of A and g s using generic (g 1  = 4.64) or species-specific parameterization.

Similar content being viewed by others

References

  1. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. Berry, J. A., Beerling, D. J. & Franks, P. J. Stomata: key players in the Earth system, past and present. Curr. Opin. Plant Biol. 13, 233–240 (2010).

    Article  PubMed  Google Scholar 

  3. Ball, J., Woodrow, I. & Berry J. in Progress in Photosynthesis Research (ed. Biggens, J.) 221–224 (Martinus Nijhoff, Dordrecht, 1987).

  4. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biol. 17, 2134–2144 (2011).

    Article  Google Scholar 

  5. Leuning, R. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).

    Article  CAS  Google Scholar 

  6. Farquhar, G. D., Caemmerer, S. V. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    Article  PubMed  CAS  Google Scholar 

  7. Collatz, G. J., Ball, J. T., Grivet, C. & Berry, J. A. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration—a model that includes a laminar boundary layer. Agr. Forest Meteorol. 54, 107–136 (1991).

    Article  Google Scholar 

  8. Foley, J. A. et al. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10, 603–628 (1996).

    Article  CAS  Google Scholar 

  9. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. 1. Model formulation. J. Clim. 9, 676–705 (1996).

    Article  Google Scholar 

  10. Bounoua, L. et al. Interactions between vegetation and climate: radiative and physiological effects of doubled atmospheric CO2. J. Clim. 12, 309–324 (1999).

    Article  Google Scholar 

  11. Moorcroft, P. R., Hurtt, G. C. & Pacala, S. W. A method for scaling vegetation dynamics: the ecosystem demography model (ED). Ecol. Monogr. 71, 557–585 (2001).

    Article  Google Scholar 

  12. Twine, T. E. et al. Impacts of elevated CO2 concentration on the productivity and surface energy budget of the soybean and maize agroecosystem in the Midwest USA. Global Change Biol. 19, 2838–2852 (2013).

    Article  Google Scholar 

  13. Somerville, C., Youngs, H., Taylor, C., Davis, S. C. & Long, S. P. Feedstocks for lignocellulosic biofuels. Science 329, 790–792 (2010).

    Article  PubMed  CAS  Google Scholar 

  14. Lobell, D. B., Sibley, A. & Ortiz-Monasterio, J. I. Extreme heat effects on wheat senescence in India. Nat. Clim. Change 2, 186–189 (2012).

    Article  Google Scholar 

  15. Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    Article  PubMed  CAS  Google Scholar 

  16. Kowalczyk, E. A. et al. The CSIRO Atmosphere Biosphere Land Exchange (CABLE) Model for use in Climate Models and as an Offline Model (CSIRO Marine and Atmospheric Research, 2006).

  17. Oleson, K. W. et al. Technical Description of Version 4.0 of the Community Land Model (CLM) (National Center for Atmospheric Research, 2010).

  18. Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Givnish, T. in On the Economy of Plant Form and Function (ed. Givnish, T. J.) 171–213 (Cambridge Univ. Press, Cambridge, 1986).

  20. De Kauwe, M. G. et al. Forest water use and water use efficiency at elevated CO2: a model−data intercomparison at two contrasting temperate forest FACE sites. Global Change Biol. 19, 1759–1779 (2013).

    Article  Google Scholar 

  21. Smith, N. G. & Dukes, J. S. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Global Change Biol. 19, 45–63 (2013).

    Article  Google Scholar 

  22. Lin, Y.-S. et al. Optimal stomatal behaviour around the world. Nat. Clim. Change 5, 459–464 (2015).

    Article  CAS  Google Scholar 

  23. Kattge, J. et al. TRY—a global database of plant traits. Global Change Biol. 17, 2905–2935 (2011).

    Article  Google Scholar 

  24. Wilson, B. T., Lister, A. J., Riemann, R. I. & Griffith, D. M. Live Tree Species Basal Area of the Contiguous United States (2000–2009) http://dx.doi.org/10.2737/RDS-2013-0013 (USDA Forest Service, Newtown Square, PA, 2013).

    Google Scholar 

  25. Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).

    Article  PubMed  Google Scholar 

  26. Wang, D., LeBauer, D. & Dietze, M. Predicting yields of short-rotation hybrid poplar (Populus spp.) for the United States through model-data synthesis. Ecol. Appl. 23, 944–958 (2013).

    Article  PubMed  Google Scholar 

  27. Lebauer, D. S., Wang, D., Richter, K. T., Davidson, C. C. & Dietze, M. C. Facilitating feedbacks between field measurements and ecosystem models. Ecol. Monogr. 83, 133–154 (2013).

    Article  Google Scholar 

  28. Cernusak, L. A. et al. Stable isotopes in leaf water of terrestrial plants. Plant Cell Environ. 39, 1087–1102 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Aranibar, J. N. et al. Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Global Change Biol. 12, 710–730 (2006).

    Article  Google Scholar 

  30. Diefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L. & Freeman, K. H. Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proc. Natl Acad. Sci. USA 107, 5738–5743 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suits, N. S. et al. Simulation of carbon isotope discrimination of the terrestrial biosphere. Global Biogeochem. Cycles 19, GB1017 (2005).

    Article  CAS  Google Scholar 

  32. Jarvis, P. G. & McNaughton, K. G. Stomatal control of transpiration—scaling up from leaf to region. Adv. Ecol. Res. 15, 1–49 (1986).

    Article  Google Scholar 

  33. Dietze, M. C. et al. A quantitative assessment of a terrestrial biosphere model’s data needs across North American biomes. J. Geophys. Res. Biogeosci. 119, 286–300 (2014).

    Article  Google Scholar 

  34. Bernacchi, C. J., Kimball, B. A., Quarles, D. R., Long, S. P. & Ort, D. R. Decreases in stomatal conductance of soybean under open-air elevation of CO2 are closely coupled with decreases in ecosystem evapotranspiration. Plant Phys. 143, 134–144 (2007).

    Article  CAS  Google Scholar 

  35. De Kauwe, M. G. et al. A test of an optimal stomatal conductance scheme within the CABLE land surface model. Geosci. Model Dev. 8, 431–452 (2015).

    Article  Google Scholar 

  36. Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dynam. 15, 183–203 (1999).

    Article  Google Scholar 

  37. Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y. & Moorcroft, P. R. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. J. Geophys. Res. Biogeosci. 114, G01002 (2009).

  38. Kerstiens, G. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47, 1813–1832 (1996).

    Article  CAS  Google Scholar 

  39. Snyder, K. A., Richards, J. H. & Donovan, L. A. Night-time conductance in C3 and C4 species: do plants lose water at night? J. Exp. Bot. 54, 861–865 (2003).

    Article  PubMed  CAS  Google Scholar 

  40. Barnard, D. M. & Bauerle, W. L. The implications of minimum stomatal conductance on modeling water flux in forest canopies. J. Geophys. Res. Biogeosci. 118, 1322–1333 (2013).

    Article  Google Scholar 

  41. Condon, A. G., Richards, R. A., Rebetzke, G. J. & Farquhar, G. D. Breeding for high water-use efficiency. J. Exp. Bot. 55, 2447–2460 (2004).

    Article  PubMed  CAS  Google Scholar 

  42. Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

    Article  Google Scholar 

  43. Bonal, D., Sabatier, D., Montpied, P., Tremeaux, D. & Guehl, J. M. Interspecific variability of delta δ13C among trees in rainforests of French Guiana: functional groups and canopy integration. Oecologia 124, 454–468 (2000).

    Article  PubMed  CAS  Google Scholar 

  44. Brodribb, T. J. & McAdam, S. A. M. Passive origins of stomatal control in vascular plants. Science 331, 582–585 (2011).

    Article  PubMed  CAS  Google Scholar 

  45. Wullschleger, S. D. Biochemical limitations to carbon assimilation in C3 plants—a retrospective analysis of the A/C i curves from 109 species. J. Exp. Bot. 44, 907–920 (1993).

    Article  CAS  Google Scholar 

  46. Leakey, A. D. B., Bernacchi, C. J., Ort, D. R. & Long, S. P. Long-term growth of soybean at elevated CO2 does not cause acclimation of stomatal conductance under fully open-air conditions. Plant Cell Environ. 29, 1794–1800 (2006).

    Article  PubMed  CAS  Google Scholar 

  47. Ainsworth, E. A. et al. Does elevated atmospheric CO2 alter diurnal C uptake and the balance of C and N metabolites in growing and fully expanded soybean leaves? J. Exp. Bot. 58, 579–591 (2007).

    Article  PubMed  CAS  Google Scholar 

  48. Long, S. P. & Bernacchi, C. J. Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J. Exp. Bot. 54, 2393–2401 (2003).

    Article  PubMed  CAS  Google Scholar 

  49. Campbell, G. S. & Norman, J. M. An Introduction to Environmental Biophysics 2nd edn (Springer Science + Business Media, New York, 1998).

    Book  Google Scholar 

  50. Powell, M. J. D. in Numerical Methods for Nonlinear Algebraic Equations (ed. Rabinowitz, P.) Ch. 7 (Gordon and Breach Science, London, 1970).

  51. Bernacchi, C. J., Singsaas, E. L., Pimentel, C., Portis, A. R. & Long, S. P. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ. 24, 253–259 (2001).

    Article  CAS  Google Scholar 

  52. Bernacchi, C. J., Pimentel, C. & Long, S. P. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ. 26, 1419–1430 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support for this project was provided by the Illinois Biomathematics Program via a grant from National Science Foundation (Division of Undergraduate Education, Award # 1129198) and the Energy Biosciences Institute. The authors thank G. Kling and the Energy Biosciences Institute Bioenergy Farm for access to the plant material used in this study, M. Dietze for assistance with model assembly, D. Rosenthal for technical support with photosynthetic gas exchange, E. Ainsworth for comments on the draft manuscript and M. de Kauwe for valuable reviews of the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.D.B.L. and K.J.W. designed the experiment. K.J.W., T.M.W., M.A. and D.W. collected the data. K.J.W. performed the modelling. K.J.W., T.M.W. and A.D.B.L. performed the statistical analyses. A.D.B.L. and K.J.W. wrote the paper with significant revisions from T.M.W. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Andrew D. B. Leakey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–3; Supplementary Figures 1–10

Supplementary Data 1

In situ gas exchange data

Supplementary Data 2

Lab gas exchange data

Supplementary Data 3

In situ model fits

Supplementary Data 4

Model inputs and outputs

Supplementary Data 5

Coupled model code

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolz, K.J., Wertin, T.M., Abordo, M. et al. Diversity in stomatal function is integral to modelling plant carbon and water fluxes. Nat Ecol Evol 1, 1292–1298 (2017). https://doi.org/10.1038/s41559-017-0238-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0238-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing