Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success

Abstract

Male reproductive success depends on the competitive ability of sperm to fertilize the ova, which should lead to strong selection on sperm characteristics. This raises the question of how heritable variation in sperm traits is maintained. Here we show that in zebra finches (Taeniopygia guttata) nearly half of the variance in sperm morphology is explained by an inversion on the Z chromosome with a 40% allele frequency in the wild. The sperm of males that are heterozygous for the inversion had the longest midpieces and the highest velocity. Furthermore, such males achieved the highest fertility and the highest siring success, both within-pair and extra-pair. Males homozygous for the derived allele show detrimental sperm characteristics and the lowest siring success. Our results suggest heterozygote advantage as the mechanism that maintains the inversion polymorphism and hence variance in sperm design and in fitness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sperm morphology as a function of male Z-chromosome inversion type.
Figure 2: Sperm swimming speed as a function of male Z-chromosome inversion type.
Figure 3: Male siring success as a function of male Z-chromosome inversion type.

Similar content being viewed by others

References

  1. Bennison, C., Hemmings, N., Slate, J. & Birkhead, T. Long sperm fertilize more eggs in a bird. Proc. R. Soc. B Biol. Sci. 282, 20141897 (2015).

    Article  Google Scholar 

  2. Birkhead, T. R. & Pizzari, T. Postcopulatory sexual selection. Nat. Rev. Genet. 3, 262–273 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Parker, G. A. in Sperm Competition and Sexual Selection (eds Birkhead, T. R. & Møller, A. P.) 3–54 (Academic, 1998).

  4. Pizzari, T. & Parker, G. A. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R. et al.) 207–245 (Elsevier, 2009).

  5. Kleven, O., Laskemoen, T., Fossoy, F., Robertson, R. J. & Lifjeld, J. T. Intraspecific variation in sperm length is negatively related to sperm competition in passerine birds. Evolution 62, 494–499 (2008).

    Article  PubMed  Google Scholar 

  6. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer, 1998).

  7. Birkhead, T. R., Pellatt, E. J., Brekke, P., Yeates, R. & Castillo-Juarez, H. Genetic effects on sperm design in the zebra finch. Nature 434, 383–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Simmons, L. W. & Moore, A. J. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R. et al.) 401–430 (Elsevier, 2009).

  9. Fisher, H. S., Jacobs-Palmer, E., Lassance, J.-M. & Hoekstra, H. E. The genetic basis and fitness consequences of sperm midpiece size in deer mice. Nat. Commun. 7, 13652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jamieson, B. G. M. in Reproductive Biology and Phylogeny of Birds Vol. 6A (ed. Jamieson, B. G. M.) 349–511 (CRC, 2007).

  11. Immler, S. & Birkhead, T. R. Sperm competition and sperm midpiece size: no consistent pattern in passerine birds. Proc. R. Soc. B Biol. Sci. 274, 561–568 (2007).

    Article  Google Scholar 

  12. Birkhead, T. R., Fletcher, F., Pellatt, E. J. & Staples, A. Ejaculate quality and the success of extra-pair copulations in the zebra finch. Nature 377, 422–423 (1995).

    Article  CAS  Google Scholar 

  13. Bennison, C., Hemmings, N., Brookes, L., Slate, J. & Birkhead, T. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird. Proc. R. Soc. B Biol. Sci. 283, 20161558 (2016).

    Article  Google Scholar 

  14. Immler, S., Griffth, S. C., Zann, R. & Birkhead, T. R. Intra-specific variance in sperm morphometry: a comparison between wild and domesticated zebra finches Taeniopygia guttata. Ibis 154, 480–487 (2012).

    Article  Google Scholar 

  15. Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).

    Article  PubMed  Google Scholar 

  16. Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. White, M. J. D. Animal Cytology and Evolution (Cambridge Univ. Press, 1977).

  18. Anton, E., Blanco, J., Egozcue, J. & Vidal, F. Sperm studies in heterozygote inversion carriers: a review. Cytogenet. Genome Res. 111, 297–304 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Morgan, D. T. A cytogenetic study of inversions in Zea mays. Genetics 35, 153–174 (1950).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Navarro, A. & Ruiz, A. On the fertility effects of pericentric inversions. Genetics 147, 931–933 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Roberts, P. A. A positive correlation between crossing over within heterozygous pericentric inversions and reduced egg hatch of Drosophila females. Genetics 56, 179–187 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Del Priore, L. & Pigozzi, M. I. Heterologous synapsis and crossover suppression in heterozygotes for a pericentric inversion in the zebra finch. Cytogenet. Genome Res. 147, 154–160 (2015).

    Article  PubMed  Google Scholar 

  23. Krimbas, C. B. & Powell, J. R. Drosophila Inversion Polymorphism (CRC, 1992).

  24. Knief, U. et al. Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol. 17, 199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Serre, D., Nadon, R. & Hudson, T. J. Large-scale recombination rate patterns are conserved among human populations. Genome Res. 15, 1547–1552 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. al Basatena, N. K. S., Hoggart, C. J., Coin, L. J. & O’Reilly, P. F. The effect of genomic inversions on estimation of population genetic parameters from SNP data. Genetics 193, 243–253 (2013).

    Article  Google Scholar 

  27. Thompson, M. J. & Jiggins, C. D. Supergenes and their role in evolution. Heredity 113, 1–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sturtevant, A. H. & Mather, E. The interrelations of inversions, heterosis and recombination. Am. Nat. 72, 447–452 (1938).

    Article  Google Scholar 

  29. Kirkpatrick, M. How and why chromosome inversions evolve. PLoS Biol. 8, e1000501 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–207 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gromko, M. H. & Richmond, R. C. Modes of selection maintaining an inversion polymorphism in Drosophila paulistorum. Genetics 88, 357–366 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kirkpatrick, M. & Barton, N. Chromosome inversions, local adaptation and speciation. Genetics 173, 419–434 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lowry, D. B. & Willis, J. H. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 8, e1000500 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Christidis, L. Chromosomal evolution within the family Estrildidae (Aves) I. The Poephilae. Genetica 71, 81–97 (1986).

    Article  Google Scholar 

  35. Itoh, Y., Kampf, K., Balakrishnan, C. N. & Arnold, A. P. Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma 120, 255–264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mossman, J., Slate, J., Humphries, S. & Birkhead, T. Sperm morphology and velocity are genetically codetermined in the zebra finch. Evolution 63, 2730–2737 (2009).

    Article  PubMed  Google Scholar 

  37. Birkhead, T. R., Martinez, J. G., Burke, T. & Froman, D. P. Sperm mobility determines the outcome of sperm competition in the domestic fowl. Proc. R. Soc. B Biol. Sci. 266, 1759–1764 (1999).

    Article  CAS  Google Scholar 

  38. Denk, A. G., Holzmann, A., Peters, A., Vermeirssen, E. L. M. & Kempenaers, B. Paternity in mallards: effects of sperm quality and female sperm selection for inbreeding avoidance. Behav. Ecol. 16, 825–833 (2005).

    Article  Google Scholar 

  39. Ellegren, H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res. 21, 2082–2086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arunkumar, K. P., Mita, K. & Nagaraju, J. The silkworm Z chromosome is enriched in testis-specific genes. Genetics 182, 493–501 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, K.-W. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0235-2 (2017).

  42. Forstmeier, W. Do individual females differ intrinsically in their propensity to engage in extra-pair copulations? PLoS ONE 2, e952 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ihle, M., Kempenaers, B. & Forstmeier, W. Fitness benefits of mate choice for compatibility in a socially monogamous species. PLoS Biol. 13, e1002248 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Silcox, A. P. & Evans, S. M. Factors affecting the formation and maintenance of pair bonds in the zebra finch, Taeniopygia guttata. Anim. Behav. 30, 1237–1243 (1982).

    Article  Google Scholar 

  45. Birkhead, T. R., Burke, T., Zann, R., Hunter, F. M. & Krupa, A. P. Extra-pair paternity and intraspecific brood parasitism in wild zebra finches Taeniopygia guttata, revealed by DNA fingerprinting. Behav. Ecol. Sociobiol. 27, 315–324 (1990).

    Article  Google Scholar 

  46. Griffith, S. C., Holleley, C. E., Mariette, M. M., Pryke, S. R. & Svedin, N. Low level of extrapair parentage in wild zebra finches. Anim. Behav. 79, 261–264 (2010).

    Article  Google Scholar 

  47. Tschirren, B., Postma, E., Rutstein, A. N. & Griffith, S. C. When mothers make sons sexy: maternal effects contribute to the increased sexual attractiveness of extra-pair offspring. Proc. R. Soc. B Biol. Sci. 279, 1233–1240 (2012).

    Article  Google Scholar 

  48. Hooper, D. M. & Price, T. D. Rates of karyotypic evolution in Estrildid finches differ between island and continental clades. Evolution 69, 890–903 (2015).

    Article  PubMed  Google Scholar 

  49. Christidis, L. Chromosomal evolution within the family Estrildidae (Aves) II. The Lonchurae. Genetica 71, 99–113 (1986).

    Article  Google Scholar 

  50. Chen, Z. J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 14, 471–482 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Burley, N. T., Enstrom, D. A. & Chitwood, L. Extra-pair relations in zebra finches: differential male success results from female tactics. Anim. Behav. 48, 1031–1041 (1994).

    Article  Google Scholar 

  52. Burley, N. T., Parker, P. G. & Lundy, K. Sexual selection and extrapair fertilization in a socially monogamous passerine, the zebra finch (Taeniopygia guttata). Behav. Ecol. 7, 218–226 (1996).

    Article  Google Scholar 

  53. Forstmeier, W., Martin, K., Bolund, E., Schielzeth, H. & Kempenaers, B. Female extrapair mating behavior can evolve via indirect selection on males. Proc. Natl Acad. Sci. USA 108, 10608–10613 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forstmeier, W., Segelbacher, G., Mueller, J. C. & Kempenaers, B. Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata). Mol. Ecol. 16, 4039–4050 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Mathot, K. J., Martin, K., Kempenaers, B. & Forstmeier, W. Basal metabolic rate can evolve independently of morphological and behavioural traits. Heredity 111, 175–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Opatová, P. et al. Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Ecol. Evol. 6, 295–304 (2016).

    Article  PubMed  Google Scholar 

  57. Knief, U. et al. Quantifying realized inbreeding in wild and captive animal populations. Heredity 114, 397–403 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gabriel, S., Ziaugra, L. & Tabbaa, D. SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr. Protoc. Hum Genet. Ch. 2, Unit 2.12 (2009).

  59. Knief, U. et al. Association mapping of morphological traits in wild and captive zebra finches: reliable within but not between populations. Mol. Ecol. 26, 1285–1305 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Warren, W. C. et al. The genome of a songbird. Nature 464, 757–762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Opatová, P. et al. Data from: Inbreeding depression of sperm traits in the zebra finch Taeniopygia guttata. Dryad Data Repository https://doi.org/10.5061/dryad.4h245 (2016).

  62. Cramer, E. R. A., Ålund, M., McFarlane, S. E., Johnsen, A. & Qvarnström, A. Females discriminate against heterospecific sperm in a natural hybrid zone. Evolution 70, 1844–1855 (2016).

    Article  PubMed  Google Scholar 

  63. Laskemoen, T. et al. Sperm quantity and quality effects on fertilization success in a highly promiscuous passerine, the tree swallow Tachycineta bicolor. Behav. Ecol. Sociobiol. 64, 1473–1483 (2010).

    Article  Google Scholar 

  64. Knief, U., Schielzeth, H., Ellegren, H., Kempenaers, B. & Forstmeier, W. A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata. Mol. Ecol. 24, 3846–3859 (2015).

    Article  PubMed  Google Scholar 

  65. Schielzeth, H. & Bolund, E. Patterns of conspecific brood parasitism in zebra finches. Anim. Behav. 79, 1329–1337 (2010).

    Article  Google Scholar 

  66. Forstmeier, W., Schielzeth, H., Schneider, M. & Kempenaers, B. Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata). Mol. Ecol. Notes 7, 1026–1028 (2007).

    Article  CAS  Google Scholar 

  67. Wang, D., Kempenaers, N., Kempenaers, B. & Forstmeier, W. Male zebra finches have limited ability to identify high-fecundity females. Behav. Ecol. 28, 784–792 (2017).

    Article  Google Scholar 

  68. Backström, N. et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 20, 485–495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Forstmeier, W., Wagenmakers, E. J. & Parker, T. H. Detecting and avoiding likely false-positive findings—a practical guide. Biol. Rev. https://doi.org/10.1111/brv.12315 (2016).

  70. R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  71. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  72. Vazquez, A. I., Bates, D. M., Rosa, G. J. M., Gianola, D. & Weigel, K. A. Technical note: an R package for fitting generalized linear mixed models in animal breeding. J. Anim. Sci. 88, 497–504 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R 2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Article  Google Scholar 

  74. Bartoń, K. MuMIn: Multi-model inference. R package v. 1.15.6 (2016).

  75. Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn (Springer, 2002).

  76. Gilmour, A. R., Gogel, B. J., Cullis, B. R. & Thompson, R. Asreml User Guide Release 3.0 (VSN International, 2009).

  77. Wolak, M. E. nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods Ecol. Evol. 3, 792–796 (2012).

    Article  Google Scholar 

  78. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. Lond. B Biol. Sci. 359, 873–890 (2004).

    Article  Google Scholar 

  79. Kruuk, L. E. B. & Hadfield, J. D. How to separate genetic and environmental causes of similarity between relatives. J. Evol. Biol. 20, 1890–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).

    Article  Google Scholar 

  81. Kinghorn, B. P. & Kinghorn, A. J. Pedigree Viewer 6.5 (Univ. New England, 2010).

Download references

Acknowledgements

We thank T. Aronson, E. Bolund, S. Janker, H. Schielzeth, J. Schreiber and O. Tomášek for help with data collection, M. Schneider and G. Hemmrich-Stanisak for molecular and genomic work, and S. Bauer, E. Bodendorfer, J. Didsbury, A. Grötsch, A. Kortner, P. Neubauer, F. Weigel and B. Wörle for animal care and help with breeding. This work was supported by the Max Planck Society (B.K.) and by the Czech Science Foundation (project no. P506/12/2472 to T.A.).

Author information

Authors and Affiliations

Authors

Contributions

U.K., M.W. and A.F. genotyped all birds. T.A., J.A. and K.M. collected sperm samples. P.O. measured sperm morphology. J.A. measured sperm velocity. W.F., M.I., D.W. and K.M. collected breeding data. U.K., W.F. and Y.P. analysed the data. U.K., W.F. and B.K. wrote the manuscript with help from T.A. All authors contributed to the final manuscript. W.F., T.A. and B.K. conceived of the study.

Corresponding author

Correspondence to Wolfgang Forstmeier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–4, Supplementary Tables 1–10, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knief, U., Forstmeier, W., Pei, Y. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat Ecol Evol 1, 1177–1184 (2017). https://doi.org/10.1038/s41559-017-0236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0236-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing