Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A sex-linked supergene controls sperm morphology and swimming speed in a songbird

Abstract

Sperm competition is an important selective force in many organisms. As a result, sperm have evolved to be among the most diverse cells in the animal kingdom. However, the relationship between sperm morphology, sperm motility and fertilization success is only partially understood. The extent to which between-male variation is heritable is largely unknown, and remarkably few studies have investigated the genetic architecture of sperm traits, especially sperm morphology. Here we use high-density genotyping and gene expression profiling to explore the considerable sperm trait variation that exists in the zebra finch Taeniopygia guttata. We show that nearly all of the genetic variation in sperm morphology is caused by an inversion polymorphism on the Z chromosome acting as a ‘supergene’. These results provide a striking example of two evolutionary genetic predictions. First, that in species where females are the heterogametic sex, genetic variation affecting sexually dimorphic traits will accumulate on the Z chromosome. Second, recombination suppression at the inversion allows beneficial dominant alleles to become fixed on whichever haplotype they first arise, without being exchanged onto other haplotypes. Finally, we show that the inversion polymorphism will be stably maintained by heterozygote advantage, because heterozygous males have the fastest and most successful sperm.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mapping variation in sperm morphology and gene expression.
Figure 2: Characterization of a Z inversion polymorphism.
Figure 3: Effects of karyotypes on sperm morphology and motility.
Figure 4: Distribution of Z karyotypes in morphometric space during artificial selection for total sperm length.

Similar content being viewed by others

References

  1. Pitnick, S., Hosken, D. J. & Birkhead, T. R. in Sperm Biology: An Evolutionary Perspective (eds Birkhead, T. R. et al.) 69–149 (Academic, Burlington, 2009).

  2. Parker, G. A. Sperm competition and its evolutionary consequences in insects. Biol. Rev. Camb. Philos. Soc. 45, 525–567 (1970).

    Article  Google Scholar 

  3. Miller, G. T. & Pitnick, S. Sperm-female coevolution in Drosophila. Science 298, 1230–1233 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Birkhead, T. R., Pellatt, E. J., Brekke, P., Yeates, R. & Castillo-Juarez, H. Genetic effects on sperm design in the zebra finch. Nature 434, 383–387 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Mossman, J., Slate, J., Humphries, S. & Birkhead, T. Sperm morphology and velocity are genetically co-determined in the zebra finch. Evolution 63, 2730–2737 (2009).

    Article  PubMed  Google Scholar 

  6. Bennison, C., Hemmings, N., Slate, J. & Birkhead, T. Long sperm fertilize more eggs in a bird. Proc. R. Soc. B 282, 20141897 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Warren, W. C. et al. The genome of a songbird. Nature 464, 757–762 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean, R. & Mank, J. E. The role of sex chromosomes in sexual dimorphism: discordance between molecular and phenotypic data. J. Evol. Biol. 27, 1443–1453 (2014).

    Article  CAS  PubMed  Google Scholar 

  9. Mank, J. E. Sex chromosomes and the evolution of sexual dimorphism: lessons from the genome. Am. Nat. 173, 141–150 (2009).

    Article  PubMed  Google Scholar 

  10. Rice, W. R. Sex-chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984).

    Article  PubMed  Google Scholar 

  11. Yang, J. et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen, G. B., Lee, S. H., Zhu, Z. X., Benyamin, B. & Robinson, M. R. EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations. Heredity 117, 51–61 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takei, M. et al. Ethylene glycol monomethyl ether-induced toxicity is mediated through the inhibition of flavoprotein dehydrogenase enzyme family. Toxicol. Sci. 118, 643–652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Connallon, T. & Clark, A. G. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression. Evolution 64, 3417–3442 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ellegren, H. Emergence of male-biased genes on the chicken Z-chromosome: sex-chromosome contrasts between male and female heterogametic systems. Genome Res. 21, 2082–2086 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pointer, M. A., Harrison, P. W., Wright, A. E. & Mank, J. E. Masculinization of gene expression is associated with exaggeration of male sexual dimorphism. PLoS Genet. 9, e1003697 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rockman, M. V. & Kruglyak, L. Genetics of global gene expression. Nat. Rev. Genet. 7, 862–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Schadt, E. E. et al. Genetics of gene expression surveyed in maize, mouse and man. Nature 422, 297–302 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Backstrom, N. et al. The recombination landscape of the zebra finch Taeniopygia guttata genome. Genome Res. 20, 485–495 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Stapley, J., Birkhead, T. R., Burke, T. & Slate, J. Pronounced inter- and intrachromosomal variation in linkage disequilibrium across the zebra finch genome. Genome Res. 20, 496–502 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hooper, D. M. & Price, T. D. Rates of karyotypic evolution in estrildid finches differ between island and continental clades. Evolution 69, 890–903 (2015).

    Article  PubMed  Google Scholar 

  22. Itoh, Y., Kampf, K., Balakrishnan, C. N. & Arnold, A. P. Karyotypic polymorphism of the zebra finch Z chromosome. Chromosoma 120, 255–264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Knief, U. et al. Fitness consequences of polymorphic inversions in the zebra finch genome. Genome Biol. 17, 199 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bennison, C., Hemmings, N., Brookes, L., Slate, J. & Birkhead, T. Sperm morphology, adenosine triphosphate (ATP) concentration and swimming velocity: unexpected relationships in a passerine bird. Proc. R. Soc. B 283, 20161558 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hemmings, N., Bennison, C. & Birkhead, T. R. Intra-ejaculate sperm selection in female zebra finches. Biol. Lett. 12, 20160220 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Johnen, H. et al. Gadd45g is essential for primary sex determination, male fertility and testis development. PLoS ONE 8, e58751 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, R. et al. Male germ cells express abundant endogenous siRNAs. Proc. Natl Acad. Sci. USA 108, 13159–13164 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh, A. P., Harada, S. & Mishina, Y. Downstream genes of Sox8 that would affect adult male fertility. Sex. Dev. 3, 16–25 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diaz-Perales, A. et al. Identification of human aminopeptidase O, a novel metalloprotease with structural similarity to aminopeptidase B and leukotriene A4 hydrolase. J. Biol. Chem. 280, 14310–14317 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Jiang, L. & Li, H. Single locus maintains large variation of sex reversal in half-smooth tongue sole (Cynoglossus semilaevis). G3 (Bethesda) 7, 583–589 (2017).

    Article  Google Scholar 

  31. Calvari, V. et al. A new submicroscopic deletion that refines the 9p region for sex reversal. Genomics 65, 203–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Kosova, G., Scott, N. M., Niederberger, C., Prins, G. S. & Ober, C. Genome-wide association study identifies candidate genes for male fertility traits in humans. Am. J. Hum. Genet. 90, 950–961 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ostermeier, G. C., Goodrich, R. J., Moldenhauer, J. S., Diamond, M. R. & Krawetz, S. A. A suite of novel human spermatozoal RNAs. J. Androl. 26, 70–74 (2005).

    CAS  PubMed  Google Scholar 

  34. Perry, J. R. B. et al. Meta-analysis of genome-wide association data identifies two loci influencing age at menarche. Nat. Genet. 41, 648–650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, X. Y. et al. Expression of a novel RAD23B mRNA splice variant in the human testis. J. Androl. 25, 363–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Ng, J. M. Y. et al. Developmental defects and male sterility in mice lacking the ubiquitin-like DNA repair gene mHR23B. Mol. Cell. Biol. 22, 1233–1245 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Knief, U. et al. A sex-chromosome inversion causes strong overdominance for sperm traits that affect siring success. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-017-0236-1 (2017).

  38. Calhim, S., Immler, S. & Birkhead, T. R. Postcopulatory sexual selection is associated with reduced variation in sperm morphology. PLoS ONE 2, e413 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Joron, M. et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature 477, 203–206 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Küpper, C. et al. A supergene determines highly divergent male reproductive morphs in the ruff. Nat. Genet. 48, 79–83 (2016).

    Article  PubMed  Google Scholar 

  41. Lamichhaney, S. et al. Structural genomic changes underlie alternative reproductive strategies in the ruff (Philomachus pugnax). Nat. Genet. 48, 84–88 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Tuttle, E. M. et al. Divergence and functional degradation of a sex chromosome-like supergene. Curr. Biol. 26, 344–350 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J. et al. A Y-like social chromosome causes alternative colony organization in fire ants. Nature 493, 664–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  44. Henderson, C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics 31, 423–447 (1975).

    Article  CAS  PubMed  Google Scholar 

  45. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the ‘animal model’. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004).

    Article  Google Scholar 

  46. ASReml User Guide Release 3.0 (VSN International, Hemel Hempstead, 2009).

  47. Immler, S., Griffth, S. C., Zann, R. & Birkhead, T. R. Intra-specific variance in sperm morphometry: a comparison between wild and domesticated zebra finches Taeniopygia guttata. Ibis 154, 480–487 (2012).

    Article  Google Scholar 

  48. Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).

    Google Scholar 

  49. Bruford, M. W., Hanotte, O., Brookfield, J. F. Y. & Burke, T. in Molecular Genetic Analysis of Populations: A Practical Approach (ed. Hoelzel, A. R.) 225–269 (IRL, Oxford, 1998).

  50. Baird, N. A. et al. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Catchen, J., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moser, G. et al. Simultaneous discovery, estimation and prediction analysis of complex traits using a Bayesian mixture model. PLoS Genet. 11, e1004969 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Aulchenko, Y. S., de Koning, D.-J. & Haley, C. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177, 577–585 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, J. Z. & Amos, C. I. Investigation of inversion polymorphisms in the human genome using principal components analysis. PLoS ONE 7, e40224 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. Cluster: cluster analysis basics and extensions. R package v. 2.0.4 (2016).

    Google Scholar 

  60. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    Article  Google Scholar 

  62. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest: tests in linear mixed effects models. R package v. 2.0-32 (2016).

  63. Warnes, G. R. et al. gplots: various R programming tools for plotting data. R package v. 3.0.1 (2016).

  64. Ronnegard, L. et al. Increasing the power of genome wide association studies in natural populations using repeated measures - evaluation and implementation. Methods Ecol. Evol. 7, 792–799 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Birkhead, T. R. & Fletcher, F. Male phenotype and ejaculate quality in the zebra finch Taeniopygia guttata. Proc. R. Soc. Lond. B 262, 329–334 (1995).

    Article  CAS  Google Scholar 

  67. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Gregory, G. Newsome and P. Young for help with animal care. G. van der Horst and J. Mossman provided CASA training and advice. R. Tucker and L. Ottaway assisted with DNA extractions. S. Manley and E. McLaren assisted with sperm measurements. C. Bloor, A. Davassi and G. Scopes, all of Affymetrix, provided help with the SNP chip design and quality control. A. Downing, K. Gharbi, H. Gunter, J. Risse, R. Talbot and U. Trivedi of Edinburgh Genomics assisted with SNP genotyping and gene expression microarray scanning. The study was funded by grants BB/I02185X/1 from the Biotechnology and Biological Sciences Research Council (to J.S.) and ERC-2010-AdG from the European Research Council (to T.R.B.), and by a PhD studentship from the Natural Environment Research Council (to C.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.B., N.H. and L.B. collected and measured sperm data. C.B., N.H. and T.R.B. designed and implemented the selection-line experiments. K.-W.K. designed the SNP chip and performed molecular work. K.-W.K. and J.S. analysed the data. T.R.B. managed the long-term study of zebra finches in Sheffield. L.L.H. and S.C.G. collected the samples from the Australian population. K.-W.K. and J.S. wrote the paper with contributions from all other authors. T.B., T.R.B. and J.S. conceived the study.

Corresponding authors

Correspondence to Kang-Wook Kim or Jon Slate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Tables 1–4 and Supplementary Figures 1–6

Supplementary Data Set 1

Summary of GWAS, eQTL and eigenGWAS analyses

Supplementary Data Set 2

Summary of gene expression in testes

Supplementary Video 1

Video of motile sperm of alternative karyotypes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KW., Bennison, C., Hemmings, N. et al. A sex-linked supergene controls sperm morphology and swimming speed in a songbird. Nat Ecol Evol 1, 1168–1176 (2017). https://doi.org/10.1038/s41559-017-0235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0235-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing