Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biodiversity at risk under future cropland expansion and intensification

Abstract

Agriculture is the leading driver of biodiversity loss. However, its future impact on biodiversity remains unclear, especially because agricultural intensification is often neglected, and high path-dependency is assumed when forecasting agricultural development—although the past suggests that shock events leading to considerable agricultural change occur frequently. Here, we investigate the possible impacts on biodiversity of pathways of expansion and intensification. Our pathways are not built to reach equivalent production targets, and therefore they should not be directly compared; they instead highlight areas at risk of high biodiversity loss across the entire option space of possible agricultural change. Based on an extensive database of biodiversity responses to agriculture, we find 30% of species richness and 31% of species abundances potentially lost because of agricultural expansion across the Amazon and Afrotropics. Only 21% of high-risk expansion areas in the Afrotropics overlap with protected areas (compared with 43% of the Neotropics). Areas at risk of biodiversity loss from intensification are found in India, Eastern Europe and the Afromontane region (7% species richness, 13% abundance loss). Many high-risk regions are not adequately covered by conservation prioritization schemes, and have low national conservation spending and high agricultural growth. Considering rising agricultural demand, we highlight areas where timely land-use planning may proactively mitigate biodiversity loss.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Potential biodiversity loss due to three agricultural development pathways.
Figure 2: Many regions at risk of expansion and intensification currently lie outside protected areas and conservation prioritization schemes.
Figure 3: Conservation spending, agricultural growth and potential species loss.

References

  1. 1.

    Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).

    Article  Google Scholar 

  2. 2.

    Maxwell, S., Fuller, R., Brooks, T. & Watson, J. The ravages of guns, nets and bulldozers. Nature 536, 143 (2016).

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Titeux, N. et al. Biodiversity scenarios neglect future land-use changes. Glob. Change Biol. 22, 2505–2515 (2016).

    Article  Google Scholar 

  6. 6.

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Shackelford, G. E., Steward, P. R., German, R. N., Sait, S. M. & Benton, T. G. Conservation planning in agricultural landscapes: hotspots of conflict between agriculture and nature. Diversity Distrib. 21, 357–367 (2015).

    Article  Google Scholar 

  8. 8.

    Phalan, B., Green, R. & Balmford, A. Closing yield gaps: perils and possibilities for biodiversity conservation. Phil. Trans. R. Soc. B Biol. Sci. 369, 20120285 (2014).

  9. 9.

    Rondinini, C. & Visconti, P. Scenarios of large mammal loss in Europe for the 21st century. Conserv. Biol. 29, 1028–1036 (2015).

    Article  PubMed  Google Scholar 

  10. 10.

    Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2015).

    Article  Google Scholar 

  11. 11.

    Bellard, C. et al. Vulnerability of biodiversity hotspots to global change. Glob. Ecol. Biogeogr. 23, 1376–1386 (2014).

    Article  Google Scholar 

  12. 12.

    de Baan, L., Alkemade, R. & Koellner, T. Land use impacts on biodiversity in LCA: a global approach. Int. J. Life Cycle Assessment 18, 1216–1230 (2013).

    Article  Google Scholar 

  13. 13.

    Visconti, P. et al. Future hotspots of terrestrial mammal loss. Phil. Trans. R. Soc. B Biol. Sci. 366, 2693–2702 (2011).

    Article  Google Scholar 

  14. 14.

    Kehoe, L. et al. Global patterns of agricultural land-use intensity and vertebrate diversity. Diversity Distrib. 21, 1308–1318 (2015).

    Article  Google Scholar 

  15. 15.

    Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Clough, Y. et al. Combining high biodiversity with high yields in tropical agroforests. Proc. Natl Acad. Sci. USA 108, 8311–8316 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

    Article  Google Scholar 

  18. 18.

    Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2010).

    Article  Google Scholar 

  19. 19.

    Müller, C. & Lotze-Campen, H. Integrating the complexity of global change pressures on land and water. Glob. Food Secur. 1, 88–93 (2012).

    Article  Google Scholar 

  20. 20.

    Rosen, R. A. IAMs and peer review. Nat. Clim. Change 5, 390–390 (2015).

    Article  Google Scholar 

  21. 21.

    Ramankutty, N. & Coomes, O. T. Land-use regime shifts: an analytical framework and agenda for future land-use research. Ecol. Soc. 21, 1 (2016).

    Article  Google Scholar 

  22. 22.

    Jepsen, M. R. et al. Transitions in European land-management regimes between 1800 and 2010. Land Use Policy 49, 53–64 (2015).

    Article  Google Scholar 

  23. 23.

    Müller, D. et al. Regime shifts limit the predictability of land-system change. Glob. Environ. Change 28, 75–83 (2014).

    Article  Google Scholar 

  24. 24.

    Nadeau, C. P., Urban, M. C. & Bridle, J. R. Coarse climate change projections for species living in a fine-scaled world. Glob. Change Biol. 23, 12–24 (2016).

    Google Scholar 

  25. 25.

    Erb, K.-H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7, 11382 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    The World Database on Protected Areas (WDPA) (UNEP-WCMC, Cambridge, 2016).

  30. 30.

    World Bank Group World Development Indicators (World Bank Publications, 2013).

  31. 31.

    Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Donald, P. F., Pisano, G., Rayment, M. D. & Pain, D. J. The Common Agricultural Policy, EU enlargement and the conservation of Europe’s farmland birds. Agric. Ecosyst. Environ. 89, 167–182 (2002).

    Article  Google Scholar 

  34. 34.

    Hartel, T., Schweiger, O., Ollerer, K., Cogalniceanu, D. & Arntzen, J. W. Amphibian distribution in a traditionally managed rural landscape of Eastern Europe: probing the effect of landscape composition. Biol. Conserv. 143, 1118–1124 (2010).

    Article  Google Scholar 

  35. 35.

    Mittermeier, R. A. et al. Hotspots Revisited: Earth's Biologically Richest and Most Endangered Terrestrial Ecoregions (CEMEX, Mexico City, 2004).

    Google Scholar 

  36. 36.

    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Cook, C. N., Wintle, B. C., Aldrich, S. C. & Wintle, B. A. Using strategic foresight to assess conservation opportunity. Conserv. Biol. 28, 1474–1483 (2014).

    Article  PubMed  Google Scholar 

  38. 38.

    Oliver, T. H. & Roy, D. B. The pitfalls of ecological forecasting. Biol. J. Linnean Soc. 115, 767–778 (2015).

    Article  Google Scholar 

  39. 39.

    Searchinger, T. D. et al. High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat. Clim. Change 5, 481–486 (2015).

    Article  Google Scholar 

  40. 40.

    Estes, L. D. et al. Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier. Phil. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150316 (2016).

    Article  Google Scholar 

  41. 41.

    Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540 (2013).

    Article  PubMed  Google Scholar 

  42. 42.

    Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).

    Article  Google Scholar 

  43. 43.

    Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 1755–2630 (2014).

    Article  Google Scholar 

  44. 44.

    Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Lee, T. M. & Jetz, W. Future battlegrounds for conservation under global change. Proc. R. Soc. B Biol. Sci. 275, 1261–1270 (2008).

    Article  Google Scholar 

  46. 46.

    Tingley, M. W., Estes, L. D. & Wilcove, D. S. Ecosystems: Climate change must not blow conservation off course. Nature 500, 271–272 (2013).

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Estes, L. D. et al. Using changes in agricultural utility to quantify future climate-induced risk to conservation. Conserv. Biol. 28, 427–437 (2014).

    Article  PubMed  Google Scholar 

  48. 48.

    van Asselen, S. & Verburg, P. H. A land system representation for global assessments and land-use modeling. Glob. Change Biol. 18, 3125–3148 (2012).

    Article  Google Scholar 

  49. 49.

    Fritz, S. et al. Mapping global cropland and field size. Glob. Change Biol. 21, 1980–1992 (2015).

    Article  Google Scholar 

  50. 50.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    ESA-CCI. CCI Land Cover Project http://www.esa-landcover-cci.org/?q=node/158 (ESA, 2016).

  52. 52.

    Wint, W. & Robinson, T. Gridded Livestock of the World (FAO: Rome, 2007).

    Google Scholar 

  53. 53.

    Global Agro-ecological Zones (GAEZ v3.0) http://www.fao.org/nr/gaez/en/ (IIASA/FAO, 2012).

  54. 54

    Verburg, P., Neumann, K. & Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Change Biol. 17, 974–989 (2011).

    Article  Google Scholar 

  55. 55

    Fritz, S. et al. Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett. 6, 044005 (2011).

    Article  Google Scholar 

  56. 56

    Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011).

    Article  Google Scholar 

  57. 57

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. 58

    Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    CAS  Article  PubMed  Google Scholar 

  59. 59

    Pradhan, P., Fischer, G., van Velthuizen, H., Reusser, D. E. & Kropp, J. P. Closing yield gaps: how sustainable can we be? PLoS ONE 10, e0129487 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Nepstad, D. C. & Stickler, C. M. Managing the tropical agriculture revolution. J. Sustainable For. 27, 43–56 (2008).

    Google Scholar 

  61. 61

    Angelsen, A. & Kaimowitz, D. in Agricultural Technologies and Tropical Deforestation (eds. Angelsen, A. & Kaimowitz, D.) 1–18 (CABI, Wallingford, 2001).

  62. 62

    Hertel, T. W., Ramankutty, N. & Baldos, U. L. C. Global market integration increases likelihood that a future African Green Revolution could increase crop land use and CO2 emissions. Proc. Natl Acad. Sci. USA 111, 13799–13804 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. 63

    Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C. Livestock to 2020: the next food revolution. Outlook Agric. 30, 27–29 (2001).

    Article  Google Scholar 

  64. 64

    Naylor, R. et al. Losing the links between livestock and land. Science 310, 1621–1622 (2005).

    CAS  Article  PubMed  Google Scholar 

  65. 65

    Bird Species Distribution Maps of the World (BirdLife International, Cambridge, and NatureServe, Arlington, 2015).

  66. 66

    IUCN Red List of Threatened Species Version 2016-1 http://www.iucnredlist.org (IUCN; accessed 2 February 2016).

  67. 67

    Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    Article  PubMed  Google Scholar 

  68. 68

    Living Planet Report 2012 (World Wildlife Fund, Gland, 2012).

  69. 69

    Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustainability 5, 484–493 (2013).

    Article  Google Scholar 

  70. 70

    Loos, J. et al. Putting meaning back into ‘sustainable intensification’. Front. Ecol. Environ. 12, 356–361 (2014).

    Article  Google Scholar 

  71. 71

    Grenyer, R. et al. Global distribution and conservation of rare and threatened vertebrates. Nature 444, 93–96 (2006).

    CAS  Article  PubMed  Google Scholar 

  72. 72

    Olson, D. M. & Dinerstein, E. The Global 200: priority ecoregions for global conservation. Ann. Missouri Bot. Gard. 89, 199–224 (2002).

    Article  Google Scholar 

  73. 73

    Sanderson, E. W. et al. The human footprint and the last of the wild. Bioscience 52, 891–904 (2002).

    Article  Google Scholar 

  74. 74

    A Global Standard for the Identification of Key Biodiversity Areas Version 1.0, 1st edn (IUCN, Gland, 2016).

  75. 75

    Spotlight on Important Bird and Biodiversity Areas http://www.birdlife.org/datazone (BirdLife International, 2014).

Download references

Acknowledgements

We thank T. Newbold for comments and insights on an earlier version of the manuscript, and P. Verburg, D. Eitelberg and D. Müller for constructive discussions. We thank F. Pötzschner and B. Jakimow for technical support. L.K. and T.K. acknowledge funding by the Einstein Foundation Berlin (Germany).

Author information

Affiliations

Authors

Contributions

L.K. and T.K. conceived the study. L.K. collected and analysed the data, and prepared the manuscript. A.R.M. and E.P. assisted in analysing the data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Laura Kehoe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–4, Supplementary Table 1, Supplementary References

Supplementary Information Tables 2-7

Supplementary Tables 2–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kehoe, L., Romero-Muñoz, A., Polaina, E. et al. Biodiversity at risk under future cropland expansion and intensification. Nat Ecol Evol 1, 1129–1135 (2017). https://doi.org/10.1038/s41559-017-0234-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing