Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The spatial scales of species coexistence

A Publisher Correction to this article was published on 02 August 2017

This article has been updated

Abstract

Understanding how species diversity is maintained is a foundational problem in ecology and an essential requirement for the discipline to be effective as an applied science. Ecologists’ understanding of this problem has rapidly matured, but this has exposed profound uncertainty about the spatial scales required to maintain species diversity. Here we define and develop this frontier by proposing the coexistence–area relationship—a real relationship in nature that can be used to understand the determinants of the scale-dependence of diversity maintenance. The coexistence–area relationship motivates new empirical techniques for addressing important, unresolved problems about the influence of demographic stochasticity, environmental heterogeneity and dispersal on scale-dependent patterns of diversity. In so doing, this framework substantially reframes current approaches to spatial community ecology. Quantifying the spatial scales of species coexistence will permit the next important advance in our understanding of the maintenance of diversity in nature, and should improve the contribution of community ecology to biodiversity conservation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The coexistence–area relationship.
Figure 2: Coexistence–area relationships in response to environmental and dispersal scales.
Figure 3: Using the coexistence–area relationship to understand conservation problems.

Similar content being viewed by others

Change history

  • 02 August 2017

    An error during production led to a truncation of the final two sentences in the abstract, which should have read ‘In so doing, this framework substantially reframes current approaches to spatial community ecology. Quantifying the spatial scales of species coexistence will permit the next important advance in our understanding of the maintenance of diversity in nature, and should improve the contribution of community ecology to biodiversity conservation.’ These have been corrected in all versions of the Perspective.

References

  1. Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).A classic reference in community ecology that, arguably, most effectively defined the problem of species coexistence in spatially homogeneous environments.

    Article  Google Scholar 

  2. Holt, R. D., Grover, J. & Tilman, D. Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am. Nat. 144, 741–771 (1994).

    Article  Google Scholar 

  3. Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).

    Article  Google Scholar 

  4. Laird, R. A. & Schamp, B. S. Competitive intransitivity promotes species coexistence. Am. Nat. 168, 182–193 (2006).

    Article  PubMed  Google Scholar 

  5. Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

    Article  Google Scholar 

  6. Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).

    Article  Google Scholar 

  7. Dybzinski, R. & Tilman, D. Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007).

    PubMed  Google Scholar 

  8. Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).

    Article  Google Scholar 

  9. Levine, J. M. & Hille Ris Lambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Siepielski, A. M. & McPeek, M. A. On the evidence for species coexistence: a critique of the coexistence program. Ecology 91, 3153–3164 (2010).

    Article  PubMed  Google Scholar 

  11. Silvertown, J., Dodd, M. E., Gowing, D. J. G. & Mountford, J. O. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400, 61–63 (1999).

    Article  CAS  Google Scholar 

  12. Whittaker, R. H. Gradient analysis of vegetation. Biol. Rev. 42, 207–264 (1967).

    Article  CAS  PubMed  Google Scholar 

  13. Humboldt, A. (Baron von) & Bonpland, A. Essai sur la géographie des plantes: accompagné d’un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu’au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803 (Chez Levrault et Schoell, 1805).

  14. Chabot, B. F. & Mooney, H. A. Physiological Ecology of North American Plant Communities (Chapman & Hall, 1985).

  15. Harley, C. D. G., Denny, M. W., Mach, K. J. & Miller, L. P. Thermal stress and morphological adaptations in limpets. Funct. Ecol. 23, 292–301 (2009).

    Article  Google Scholar 

  16. Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789 (2002).

    Article  PubMed  Google Scholar 

  17. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Snyder, R. E. When does environmental variation most influence species coexistence? Theor. Ecol. 1, 129–139 (2008).Theoretical investigation of the effects of spatial and temporal autocorrelation in the environment on the ability of species to coexist.

    Article  Google Scholar 

  19. Holt, G. & Chesson, P. Scale-dependent community theory for streams and other linear habitats. Am. Nat. 188, E59–E73 (2016).

    Article  PubMed  Google Scholar 

  20. Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).

    Article  Google Scholar 

  21. Lomolino, M. V. Ecology’s most general, yet protean pattern: the species–area relationship. J. Biogeogr. 27, 17–26 (2000).

    Article  Google Scholar 

  22. Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Classic paper on the influence of scale on ecological patterns and processes.

    Article  Google Scholar 

  23. Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

    Article  PubMed  Google Scholar 

  24. Whittaker, R. J. & Triantis, K. A. The species–area relationship: an exploration of that ‘most general, yet protean pattern’. J. Biogeogr. 39, 623–626 (2012).

    Article  Google Scholar 

  25. Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

    Article  Google Scholar 

  26. Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

    Article  PubMed  Google Scholar 

  27. Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).An important and highly influential paper that initiated one of the current dominant paradigms for understanding the influence of spatial processes on community structure.

    Article  Google Scholar 

  28. Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).The contribution that crystallized contemporary understanding of the requirements for species coexistence, and organized our understanding of coexistence mechanisms into just a few classes.

    Article  Google Scholar 

  29. Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000).Describes the mathematical requirements for species coexistence in spatially varying environments.

    Article  CAS  PubMed  Google Scholar 

  30. Shoemaker, L. G. & Melbourne, B. A. Linking metacommunity paradigms to spatial coexistence mechanisms. Ecology 97, 2436–2446 (2016).

    Article  PubMed  Google Scholar 

  31. Wu, J. & Li, H. in Scaling and Uncertainty Analysis in Ecology: Methods and Applications (eds Wu, J., Jones, K. B., Li, H. & Loucks, O. L.) 3–15 (Springer, 2006).

  32. Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

    Article  Google Scholar 

  33. Turner, M. G. & Gardner, R. H. Landscape Ecology in Theory and Practice: Pattern and Process 2nd edn (Springer, 2015).

  34. Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

    Article  PubMed  Google Scholar 

  35. Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B Biol. Sci. 277, 2185–2191 (2010).

    Article  Google Scholar 

  36. Turelli, M. in Biological Growth and Spread: Mathematical Theories and Applications (eds Jäger, W., Rost, H. & Tautu, P.) 119–129 (Springer, 1980).

  37. Lande, R., Engen, S. & Saether, B.-E. Stochastic Population Dynamics in Ecology and Conservation (Oxford Univ. Press, 2003).

  38. Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Article  Google Scholar 

  39. Descamps-Julien, B. & Gonzalez, A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824 (2005).

    Article  Google Scholar 

  40. Snyder, R. E. Spatiotemporal population distributions and their implications for species coexistence in a variable environment. Theor. Popul. Biol. 72, 7–20 (2007).

    Article  PubMed  Google Scholar 

  41. Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, 2001).

  42. Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

    Article  PubMed  Google Scholar 

  43. Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5, e11567 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Drake, J. M. & Griffen, B. D. Speed of expansion and extinction in experimental populations. Ecol. Lett. 12, 772–778 (2009).

    Article  PubMed  Google Scholar 

  46. Gonzalez, A., Lawton, J. H., Gilbert, F. S., Blackburn, T. M. & Evans-Freke, I. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281, 2045–2047 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Gonzalez, A. Community relaxation in fragmented landscapes: the relation between species richness, area and age. Ecol. Lett. 3, 441–448 (2000).

    Article  Google Scholar 

  48. Sears, A. L. W. & Chesson, P. New methods for quantifying the spatial storage effect: an illustration with desert annuals. Ecology 88, 2240–2247 (2007).One of very few formal empirical tests of the operation of the spatial storage effect mechanism in nature.

    Article  PubMed  Google Scholar 

  49. Hart, S. P. & Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. Ecology 94, 2719–2731 (2013).

    Article  PubMed  Google Scholar 

  50. Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: a call for experimental macroecology. Trends Ecol. Evol. 31, 831–841 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Snyder, R. E. & Chesson, P. Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol. Lett. 6, 301–309 (2003).

    Article  Google Scholar 

  53. Bolker, B. M. & Pacala, S. W. Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153, 575–602 (1999).

    Article  Google Scholar 

  54. Germain, R. M., Strauss, S. Y. & Gilbert, B. Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. Proc. Natl Acad. Sci. USA 114, 4447–4452 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).

    Article  Google Scholar 

  56. Ritchie, M. E. & Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Ritchie, M. E. Scale, Heterogeneity, and the Structure and Diversity of Ecological Communities Vol. 45 (Princeton Univ. Press, 2010).

  58. Baskett, M. L., Micheli, F. & Levin, S. A. Designing marine reserves for interacting species: insights from theory. Biol. Conserv. 137, 163–179 (2007).

    Article  Google Scholar 

  59. McCarthy, M. et al. Logic for designing nature reserves for multiple species. Am. Nat. 167, 717–727 (2006).

    Article  PubMed  Google Scholar 

  60. Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

    Article  PubMed  Google Scholar 

  61. Nicholson, E. et al. A new method for conservation planning for the persistence of multiple species. Ecol. Lett 9, 1049–1060 (2006).

    Article  PubMed  Google Scholar 

  62. Nicholson, E. & Possingham, H. P. Objectives for multiple-species conservation planning. Conserv. Biol. 20, 871–881 (2006).

    Article  PubMed  Google Scholar 

  63. Franklin, J. et al. Planning, implementing, and monitoring multiple-species habitat conservation plans. Am. J. Bot. 98, 559–571 (2011).

    Article  PubMed  Google Scholar 

  64. Bennett, A. F. et al. Ecological processes: a key element in strategies for nature conservation. Ecol. Manage. Restor. 10, 192–199 (2009).

    Article  Google Scholar 

  65. Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

    Article  PubMed  Google Scholar 

  66. Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).

    Article  PubMed  Google Scholar 

  67. Beier, P. & Brost, B. Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv. Biol. 24, 701–710 (2010).

    Article  PubMed  Google Scholar 

  68. He, F. & Hubbell, S. P. He and Hubbell reply. Nature 482, E5–E6 (2012).

    Article  CAS  Google Scholar 

  69. Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

    Article  PubMed  Google Scholar 

  70. Life in a Working Landscape: Towards a Conservation Strategy for the World’s Temperate Grasslands (IUCN, 2008).

  71. Angert, A. L., Huxman, T. E., Chesson, P. & Venable, D. L. Functional tradeoffs determine species coexistence via the storage effect. Proc. Natl Acad. Sci. USA 106, 11641–11645 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–5 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities (Univ. Chicago Press, 2005).

  74. Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. & Group, M. W. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26, 482–491 (2011).

    Article  PubMed  Google Scholar 

  75. Melbourne, B. A. & Chesson, P. The scale transition: scaling up population dynamics with field data. Ecology 87, 1478–1488 (2006).

    Article  PubMed  Google Scholar 

  76. Melbourne, B. A., Sears, A. L. W., Donahue, M. J. & Chesson, P. in Metacommunities: Spatial Dynamics and Ecological Communities (eds M. Holyoak, M. A. Leibold & R. D. Holt) 307–330 (Univ. Chicago Press, 2005).

  77. Chesson, P. Scale transition theory: its aims, motivations and predictions. Ecol. Complex. 10, 52–68 (2012).

    Article  Google Scholar 

  78. Chesson, P., Donahue, M. J., Melbourne, B. A. & Sears, A. L. W. in Metacommunities: Spatial Dynamics and Ecological Communities (eds M. Holyoak, M. A. Leibold & B. Holt) 279–306 (Univ. Chicago Press, 2005).

  79. Snyder, R. E. & Chesson, P. How the spatial scales of dispersal, competition and environmental heterogeneity interact to affect coexistence. Am. Nat. 164, 633–650 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Gonzalez for comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.P.H. and J.M.L. conceived the idea. S.P.H. wrote the paper with all authors contributing revisions. J.U. and S.P.H. developed the model and code for Fig. 2.

Corresponding author

Correspondence to Simon P. Hart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corrected online: Publisher correction 2 August 2017

A correction to this article is available online at https://doi.org/10.1038/s41559-017-0289-1.

Electronic supplementary material

Supplementary Material 1

Details of model simulations used to generate Fig. 2.

Supplementary Code 1

R code.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hart, S.P., Usinowicz, J. & Levine, J.M. The spatial scales of species coexistence. Nat Ecol Evol 1, 1066–1073 (2017). https://doi.org/10.1038/s41559-017-0230-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0230-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing