Perspective | Published:

The spatial scales of species coexistence

Nature Ecology & Evolutionvolume 1pages10661073 (2017) | Download Citation

Abstract

Understanding how species diversity is maintained is a foundational problem in ecology and an essential requirement for the discipline to be effective as an applied science. Ecologists’ understanding of this problem has rapidly matured, but this has exposed profound uncertainty about the spatial scales required to maintain species diversity. Here we define and develop this frontier by proposing the coexistence–area relationship—a real relationship in nature that can be used to understand the determinants of the scale-dependence of diversity maintenance. The coexistence–area relationship motivates new empirical techniques for addressing important, unresolved problems about the influence of demographic stochasticity, environmental heterogeneity and dispersal on scale-dependent patterns of diversity. In so doing, this framework substantially reframes current approaches to spatial community ecology. Quantifying the spatial scales of species coexistence will permit the next important advance in our understanding of the maintenance of diversity in nature, and should improve the contribution of community ecology to biodiversity conservation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Corrected online: Publisher correction 2 August 2017

A correction to this article is available online at https://doi.org/10.1038/s41559-017-0289-1.

Change history

  • 02 August 2017

    An error during production led to a truncation of the final two sentences in the abstract, which should have read ‘In so doing, this framework substantially reframes current approaches to spatial community ecology. Quantifying the spatial scales of species coexistence will permit the next important advance in our understanding of the maintenance of diversity in nature, and should improve the contribution of community ecology to biodiversity conservation.’ These have been corrected in all versions of the Perspective.

References

  1. 1.

    Hutchinson, G. E. The paradox of the plankton. Am. Nat. 95, 137–145 (1961).A classic reference in community ecology that, arguably, most effectively defined the problem of species coexistence in spatially homogeneous environments.

  2. 2.

    Holt, R. D., Grover, J. & Tilman, D. Simple rules for interspecific dominance in systems with exploitative and apparent competition. Am. Nat. 144, 741–771 (1994).

  3. 3.

    Holt, R. D. & Polis, G. A. A theoretical framework for intraguild predation. Am. Nat. 149, 745–764 (1997).

  4. 4.

    Laird, R. A. & Schamp, B. S. Competitive intransitivity promotes species coexistence. Am. Nat. 168, 182–193 (2006).

  5. 5.

    Huisman, J. & Weissing, F. J. Biodiversity of plankton by species oscillations and chaos. Nature 402, 407–410 (1999).

  6. 6.

    Chesson, P. L. & Warner, R. R. Environmental variability promotes coexistence in lottery competitive systems. Am. Nat. 117, 923–943 (1981).

  7. 7.

    Dybzinski, R. & Tilman, D. Resource use patterns predict long-term outcomes of plant competition for nutrients and light. Am. Nat. 170, 305–318 (2007).

  8. 8.

    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).

  9. 9.

    Levine, J. M. & Hille Ris Lambers, J. The importance of niches for the maintenance of species diversity. Nature 461, 254–257 (2009).

  10. 10.

    Siepielski, A. M. & McPeek, M. A. On the evidence for species coexistence: a critique of the coexistence program. Ecology 91, 3153–3164 (2010).

  11. 11.

    Silvertown, J., Dodd, M. E., Gowing, D. J. G. & Mountford, J. O. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400, 61–63 (1999).

  12. 12.

    Whittaker, R. H. Gradient analysis of vegetation. Biol. Rev. 42, 207–264 (1967).

  13. 13.

    Humboldt, A. (Baron von) & Bonpland, A. Essai sur la géographie des plantes: accompagné d’un tableau physique des régions équinoxiales, fondé sur des mesures exécutées, depuis le dixième degré de latitude boréale jusqu’au dixième degré de latitude australe, pendant les années 1799, 1800, 1801, 1802 et 1803 (Chez Levrault et Schoell, 1805).

  14. 14.

    Chabot, B. F. & Mooney, H. A. Physiological Ecology of North American Plant Communities (Chapman & Hall, 1985).

  15. 15.

    Harley, C. D. G., Denny, M. W., Mach, K. J. & Miller, L. P. Thermal stress and morphological adaptations in limpets. Funct. Ecol. 23, 292–301 (2009).

  16. 16.

    Somero, G. N. Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr. Comp. Biol. 42, 780–789 (2002).

  17. 17.

    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

  18. 18.

    Snyder, R. E. When does environmental variation most influence species coexistence? Theor. Ecol. 1, 129–139 (2008).Theoretical investigation of the effects of spatial and temporal autocorrelation in the environment on the ability of species to coexist.

  19. 19.

    Holt, G. & Chesson, P. Scale-dependent community theory for streams and other linear habitats. Am. Nat. 188, E59–E73 (2016).

  20. 20.

    Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).

  21. 21.

    Lomolino, M. V. Ecology’s most general, yet protean pattern: the species–area relationship. J. Biogeogr. 27, 17–26 (2000).

  22. 22.

    Levin, S. A. The problem of pattern and scale in ecology. Ecology 73, 1943–1967 (1992).Classic paper on the influence of scale on ecological patterns and processes.

  23. 23.

    Drakare, S., Lennon, J. J. & Hillebrand, H. The imprint of the geographical, evolutionary and ecological context on species–area relationships. Ecol. Lett. 9, 215–227 (2006).

  24. 24.

    Whittaker, R. J. & Triantis, K. A. The species–area relationship: an exploration of that ‘most general, yet protean pattern’. J. Biogeogr. 39, 623–626 (2012).

  25. 25.

    Tuomisto, H. A diversity of beta diversities: straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).

  26. 26.

    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).

  27. 27.

    Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).An important and highly influential paper that initiated one of the current dominant paradigms for understanding the influence of spatial processes on community structure.

  28. 28.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).The contribution that crystallized contemporary understanding of the requirements for species coexistence, and organized our understanding of coexistence mechanisms into just a few classes.

  29. 29.

    Chesson, P. General theory of competitive coexistence in spatially-varying environments. Theor. Popul. Biol. 58, 211–237 (2000).Describes the mathematical requirements for species coexistence in spatially varying environments.

  30. 30.

    Shoemaker, L. G. & Melbourne, B. A. Linking metacommunity paradigms to spatial coexistence mechanisms. Ecology 97, 2436–2446 (2016).

  31. 31.

    Wu, J. & Li, H. in Scaling and Uncertainty Analysis in Ecology: Methods and Applications (eds Wu, J., Jones, K. B., Li, H. & Loucks, O. L.) 3–15 (Springer, 2006).

  32. 32.

    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).

  33. 33.

    Turner, M. G. & Gardner, R. H. Landscape Ecology in Theory and Practice: Pattern and Process 2nd edn (Springer, 2015).

  34. 34.

    Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. 19, 825–838 (2016).

  35. 35.

    Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B Biol. Sci. 277, 2185–2191 (2010).

  36. 36.

    Turelli, M. in Biological Growth and Spread: Mathematical Theories and Applications (eds Jäger, W., Rost, H. & Tautu, P.) 119–129 (Springer, 1980).

  37. 37.

    Lande, R., Engen, S. & Saether, B.-E. Stochastic Population Dynamics in Ecology and Conservation (Oxford Univ. Press, 2003).

  38. 38.

    Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

  39. 39.

    Descamps-Julien, B. & Gonzalez, A. Stable coexistence in a fluctuating environment: an experimental demonstration. Ecology 86, 2815–2824 (2005).

  40. 40.

    Snyder, R. E. Spatiotemporal population distributions and their implications for species coexistence in a variable environment. Theor. Popul. Biol. 72, 7–20 (2007).

  41. 41.

    Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography Vol. 32 (Princeton Univ. Press, 2001).

  42. 42.

    Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).

  43. 43.

    Melbourne, B. A. & Hastings, A. Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103 (2008).

  44. 44.

    Nielsen, U. N. et al. The enigma of soil animal species diversity revisited: the role of small-scale heterogeneity. PLoS ONE 5, e11567 (2010).

  45. 45.

    Drake, J. M. & Griffen, B. D. Speed of expansion and extinction in experimental populations. Ecol. Lett. 12, 772–778 (2009).

  46. 46.

    Gonzalez, A., Lawton, J. H., Gilbert, F. S., Blackburn, T. M. & Evans-Freke, I. Metapopulation dynamics, abundance, and distribution in a microecosystem. Science 281, 2045–2047 (1998).

  47. 47.

    Gonzalez, A. Community relaxation in fragmented landscapes: the relation between species richness, area and age. Ecol. Lett. 3, 441–448 (2000).

  48. 48.

    Sears, A. L. W. & Chesson, P. New methods for quantifying the spatial storage effect: an illustration with desert annuals. Ecology 88, 2240–2247 (2007).One of very few formal empirical tests of the operation of the spatial storage effect mechanism in nature.

  49. 49.

    Hart, S. P. & Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. Ecology 94, 2719–2731 (2013).

  50. 50.

    Kraft, N. J. B., Godoy, O. & Levine, J. M. Plant functional traits and the multidimensional nature of species coexistence. Proc. Natl Acad. Sci. USA 112, 797–802 (2015).

  51. 51.

    Alexander, J. M., Diez, J. M., Hart, S. P. & Levine, J. M. When climate reshuffles competitors: a call for experimental macroecology. Trends Ecol. Evol. 31, 831–841 (2016).

  52. 52.

    Snyder, R. E. & Chesson, P. Local dispersal can facilitate coexistence in the presence of permanent spatial heterogeneity. Ecol. Lett. 6, 301–309 (2003).

  53. 53.

    Bolker, B. M. & Pacala, S. W. Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153, 575–602 (1999).

  54. 54.

    Germain, R. M., Strauss, S. Y. & Gilbert, B. Experimental dispersal reveals characteristic scales of biodiversity in a natural landscape. Proc. Natl Acad. Sci. USA 114, 4447–4452 (2017).

  55. 55.

    Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).

  56. 56.

    Ritchie, M. E. & Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560 (1999).

  57. 57.

    Ritchie, M. E. Scale, Heterogeneity, and the Structure and Diversity of Ecological Communities Vol. 45 (Princeton Univ. Press, 2010).

  58. 58.

    Baskett, M. L., Micheli, F. & Levin, S. A. Designing marine reserves for interacting species: insights from theory. Biol. Conserv. 137, 163–179 (2007).

  59. 59.

    McCarthy, M. et al. Logic for designing nature reserves for multiple species. Am. Nat. 167, 717–727 (2006).

  60. 60.

    Watson, J. E. M. et al. Bolder science needed now for protected areas. Conserv. Biol. 30, 243–248 (2016).

  61. 61.

    Nicholson, E. et al. A new method for conservation planning for the persistence of multiple species. Ecol. Lett 9, 1049–1060 (2006).

  62. 62.

    Nicholson, E. & Possingham, H. P. Objectives for multiple-species conservation planning. Conserv. Biol. 20, 871–881 (2006).

  63. 63.

    Franklin, J. et al. Planning, implementing, and monitoring multiple-species habitat conservation plans. Am. J. Bot. 98, 559–571 (2011).

  64. 64.

    Bennett, A. F. et al. Ecological processes: a key element in strategies for nature conservation. Ecol. Manage. Restor. 10, 192–199 (2009).

  65. 65.

    Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).

  66. 66.

    Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).

  67. 67.

    Beier, P. & Brost, B. Use of land facets to plan for climate change: conserving the arenas, not the actors. Conserv. Biol. 24, 701–710 (2010).

  68. 68.

    He, F. & Hubbell, S. P. He and Hubbell reply. Nature 482, E5–E6 (2012).

  69. 69.

    Parr, C. L., Lehmann, C. E. R., Bond, W. J., Hoffmann, W. A. & Andersen, A. N. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol. Evol. 29, 205–213 (2014).

  70. 70.

    Life in a Working Landscape: Towards a Conservation Strategy for the World’s Temperate Grasslands (IUCN, 2008).

  71. 71.

    Angert, A. L., Huxman, T. E., Chesson, P. & Venable, D. L. Functional tradeoffs determine species coexistence via the storage effect. Proc. Natl Acad. Sci. USA 106, 11641–11645 (2009).

  72. 72.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. W. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–5 (2005).

  73. 73.

    Holyoak, M., Leibold, M. A. & Holt, R. D. Metacommunities: Spatial Dynamics and Ecological Communities (Univ. Chicago Press, 2005).

  74. 74.

    Logue, J. B., Mouquet, N., Peter, H., Hillebrand, H. & Group, M. W. Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol. Evol. 26, 482–491 (2011).

  75. 75.

    Melbourne, B. A. & Chesson, P. The scale transition: scaling up population dynamics with field data. Ecology 87, 1478–1488 (2006).

  76. 76.

    Melbourne, B. A., Sears, A. L. W., Donahue, M. J. & Chesson, P. in Metacommunities: Spatial Dynamics and Ecological Communities (eds M. Holyoak, M. A. Leibold & R. D. Holt) 307–330 (Univ. Chicago Press, 2005).

  77. 77.

    Chesson, P. Scale transition theory: its aims, motivations and predictions. Ecol. Complex. 10, 52–68 (2012).

  78. 78.

    Chesson, P., Donahue, M. J., Melbourne, B. A. & Sears, A. L. W. in Metacommunities: Spatial Dynamics and Ecological Communities (eds M. Holyoak, M. A. Leibold & B. Holt) 279–306 (Univ. Chicago Press, 2005).

  79. 79.

    Snyder, R. E. & Chesson, P. How the spatial scales of dispersal, competition and environmental heterogeneity interact to affect coexistence. Am. Nat. 164, 633–650 (2004).

Download references

Acknowledgements

We thank A. Gonzalez for comments on an earlier version of this manuscript.

Author information

Affiliations

  1. Institute of Integrative Biology, ETH Zürich (Swiss Federal Institute of Technology), Universitätstrasse 16, 8092, Zürich, Switzerland

    • Simon P. Hart
    • , Jacob Usinowicz
    •  & Jonathan M. Levine

Authors

  1. Search for Simon P. Hart in:

  2. Search for Jacob Usinowicz in:

  3. Search for Jonathan M. Levine in:

Contributions

S.P.H. and J.M.L. conceived the idea. S.P.H. wrote the paper with all authors contributing revisions. J.U. and S.P.H. developed the model and code for Fig. 2.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Simon P. Hart.

Electronic supplementary material

  1. Supplementary Material 1

    Details of model simulations used to generate Fig. 2.

  2. Supplementary Code 1

    R code.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41559-017-0230-7

Further reading