Agricultural intensification without biodiversity loss is possible in grassland landscapes

Article metrics

Abstract

Grassland biodiversity in managed landscapes is threatened by land-use intensification, but is also dependent on low-intensity management. Solutions that allow for both agricultural production and species conservation may be realized either on individual grasslands, by adjusting management intensity, or at the landscape level, when grasslands are managed at different intensities. Here we use a dataset of more than 1,000 arthropod species collected in more than 100 grasslands along gradients of productivity, to assess the reaction of individual species to changes in productivity. We defined a range of land-use strategies and evaluated their effects on overall production and on species abundances. We show that conservation of arthropods can be improved without reducing overall production. We also find that production can be increased without jeopardizing conservation. Conservation and production could, however, not be maximized simultaneously at the landscape level, emphasizing that management goals need to be clearly defined.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Selection of optimal land-use strategies based on abundance–productivity curves.
Figure 2: Optimal strategies across the range of possible landscape-level production targets.
Figure 3: Productivity in grassland biomass on each grassland assigned by the optimization algorithms.
Figure 4: Rare species that reach their critical productivity for vulnerability or extinction at different levels of productivity.

References

  1. 1.

    Hejcman, M., Hejcmanová, P., Pavlů, V. & Beneš, J. Origin and history of grasslands in central Europe - a review. Grass Forage Sci. 68, 345–363 (2013).

  2. 2.

    Greening (European Commission, 2016); http://ec.europa.eu/agriculture/direct-support/greening/index_en.htm

  3. 3.

    Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).

  4. 4.

    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).

  5. 5.

    Hopkins, A. & Wilkins, R. J. Temperate grassland: key developments in the last century and future perspectives. J. Agr. Sci. 144, 503–523 (2006).

  6. 6.

    Kleijn, D. & Sutherland, W. J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969 (2003).

  7. 7.

    Veen, P., Jefferson, R., de Smidt, J. & van derStraaten, J. (eds) Grasslands in Europe of High Nature Value 320 (KNNV, 2009).

  8. 8.

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

  9. 9.

    Hulme, M. F. et al. Conserving the birds of Uganda’s banana-coffee arc: land sparing and land sharing compared. PLoS ONE 8, e54597 (2013).

  10. 10.

    Kamp, J. et al. Agricultural development and the conservation of avian biodiversity on the Eurasian steppes: a comparison of land-sparing and land-sharing approaches. J. Appl. Ecol. 52, 1578–1587 (2015).

  11. 11.

    Green, R. E., Cornell, S. J., Scharlemann, J. P. & Balmford, A. Farming and the fate of wild nature. Science 307, 550–555 (2005).

  12. 12.

    Gabriel, D., Sait, S. M., Kunin, W. E., Benton, T. G. & Steffan-Dewenter, I. Food production vs. biodiversity: comparing organic and conventional agriculture. J. Appl. Ecol. 50, 355–364 (2013).

  13. 13.

    Lamb, A., Balmford, A., Green, R. E. & Phalan, B. To what extent could edge effects and habitat fragmentation diminish the potential benefits of land sparing? Biol. Conserv. 195, 264–271 (2016).

  14. 14.

    Butsic, V. & Kuemmerle, T. Using optimization methods to align food production and biodiversity conservation beyond land sharing and land sparing. Ecol. Appl. 25, 589–595 (2015).

  15. 15.

    Miettinen, K. Nonlinear Multiobjective Optimization (Springer, 1998).

  16. 16.

    Edwards, D. P. et al. Land-sharing versus land-sparing logging: reconciling timber extraction with biodiversity conservation. Glob. Change Biol. 20, 183–191 (2014).

  17. 17.

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012).

  18. 18.

    Fischer, J. et al. Land sparing versus land sharing: moving forward. Conserv. Lett. 7, 149–157 (2014).

  19. 19.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

  20. 20.

    Bennett, E. M. Changing the agriculture and environment conversation. Nat. Ecol. Evol. 1, 0018 (2017).

  21. 21.

    Dotta, G., Phalan, B., Silva, T. W., Green, R. & Balmford, A. Assessing strategies to reconcile agriculture and bird conservation in the temperate grasslands of South America. Conserv. Biol. 30, 618–627 (2016).

  22. 22.

    Bennett, J. R. et al. Balancing phylogenetic diversity and species numbers in conservation prioritization, using a case study of threatened species in New Zealand. Biol. Conserv. 174, 47–54 (2014).

  23. 23.

    Cadotte, M. W. & Jonathan Davies, T. Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Divers. Distrib. 16, 376–385 (2010).

  24. 24.

    Simons, N. K. et al. Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agr. Ecosyst. Environ. 237, 143–153 (2017).

  25. 25.

    Simons, N. K., Weisser, W. W. & Gossner, M. M. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient. Ecology 97, 754–764 (2016).

  26. 26.

    Allan, E. et al. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecol. Lett. 18, 834–843 (2015).

  27. 27.

    Batáry, P. et al. Responses of grassland specialist and generalist beetles to management and landscape complexity. Divers. Distrib. 13, 196–202 (2007).

  28. 28.

    Ball, I. R., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools (eds Moilanen, A., Wilson, K. A. & Possingham, H. P.) Ch. 14, 185–195 (Oxford Univ. Press, 2009).

  29. 29.

    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity - ecosystem service management. Ecol. Lett. 8, 857–874 (2005).

  30. 30.

    Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl. Ecol. 11, 473–485 (2010).

  31. 31.

    Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).

  32. 32.

    Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033 (2014).

  33. 33.

    Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).

  34. 34.

    Riehl, G. Ermittlung von Erträgen auf dem Grünland (Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie, 2001).

  35. 35.

    Mewes, M. Agrarökonomische Kostenberechnungen für Biodiversitätsschutzmaßnahmen Report No. 1436-140X (Helmholtz-Zentrum für Umweltforschung GmbH - UFZ, 2010).

  36. 36.

    R Core Team R: A Language and Environment for Statistical Computing v3.3.0 (R Foundation for Statistical Computing, 2016).

  37. 37.

    Bolker, B. & R Core Team Tools for General Maximum Likelihood Estimation Version 1.0.18 (2016).

  38. 38.

    Marler, R. T. & Arora, J. S. Survey of multi-objective optimization methods for engineering. Struct. Multidiscip. O. 26, 369–395 (2004).

  39. 39.

    Mersmann, O. mco: Multiple Criteria Optimization Algorithms and Related Functions (2014).

  40. 40.

    Deb, K., Pratap, A. & Agarwal, S. A fast and elitist multiobjective genetic algorithm: NSGAII. IEEE T. Evolut. Comput. 6, 182–197 (2002).

Download references

Acknowledgements

We thank T. Lewinsohn for his comments on an earlier draft of this publication. We thank S. Boch, J. Müller, E. Pašalić and S. A. Socher for conducting the plant biomass sampling and for providing the data online. We thank T. Husen for helpful comments on the implementation of the optimization algorithms. We also thank the managers of the three exploratories, K. Wels, S. Renner, S. Gockel, K. Wiesner, A. Hemp and M. Gorke for their work in maintaining the plot and project infrastructure; S. Pfeiffer, M. Gleisberg and C. Fischer for giving support through the central office, as well as J. Nieschulze and M. Owonibi for managing the central database. We also thank M. Fischer, E. Linsenmair, D. Hessenmöller, D. Prati, I. Schöning, F. Buscot, E.-D. Schulze and the late E. Kalko for their role in setting up the Biodiversity Exploratories project. The work was funded by the DFG Priority Program 1374 ‘Infrastructure-Biodiversity-Exploratories’ (DFG-WE 3081/21-1.). Fieldwork permits were issued by the responsible state environmental offices of Baden-Württemberg, Thüringen and Brandenburg (according to § 72 BbgNatSchG).

Author information

N.K.S. and W.W.W. conceived the idea for the manuscript and defined the final outline. N.K.S. analysed the data and wrote the first manuscript draft. W.W.W. commented on all manuscript versions.

Correspondence to Nadja K. Simons.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

One Supplementary Table, 12 Supplementary Figures, 3 Supplementary Methods and three sets of additional Supplementary Figures

Supplementary Data 1

Average productivity on the sampled grasslands over the years 2006–2012. Grasslands are located in three regions in Germany, indicated by the first three letters of the PlotID: AEG indicates grasslands located in the Schwäbische Alb, HEG indicates grasslands located in the Hainich-Dün, SEG indicates grasslands located in the Schorfheide Chorin. The PlotIDs correspond to the PlotIDs given in the other data files used in the current study (see ‘Data availability’). Further publicly available data from the study regions and grasslands can be found in the data repository of the Biodiversity Exploratories (https://www.bexis.uni-jena.de/PublicData/PublicData.aspx).

Supplementary Data 2

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in the Schwäbische Alb. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Supplementary Data 3

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in Hainich-Dün. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Supplementary Data 4

Results from the selected best model for abundance-productivity curves of each common arthropod species sampled in Schorfheide-Chorin. SpeciesID indicates scientific species name, Best_model indicates selected best model based on the residual deviances of all tested models. Res_Dev gives the residual deviance. _Est indicates the parameter estimate, _SE indicates the parameters’ standard error: _z indicates the value of the z-statistic for each parameter and _p indicates the probability level from the z-statistic for each parameter. Missing values (because a parameter is not used in the respective model or because statistical tests could not be performed) are indicated by NA.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Simons, N.K., Weisser, W.W. Agricultural intensification without biodiversity loss is possible in grassland landscapes. Nat Ecol Evol 1, 1136–1145 (2017) doi:10.1038/s41559-017-0227-2

Download citation

Further reading

  • Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities

    • Solen Le Clec'h
    • , Robert Finger
    • , Nina Buchmann
    • , Arjan S. Gosal
    • , Lukas Hörtnagl
    • , Olivier Huguenin-Elie
    • , Philippe Jeanneret
    • , Andreas Lüscher
    • , Manuel K. Schneider
    •  & Robert Huber

    Journal of Environmental Management (2019)

  • Routes to achieving sustainable intensification in simulated dairy farms: The importance of production efficiency and complimentary land uses

    • Patrick J. C. White
    • , Mark A. Lee
    • , Dave J. Roberts
    • , Lorna J. Cole
    •  & Tomas Pärt

    Journal of Applied Ecology (2019)

  • Aligning evidence generation and use across health, development, and environment

    • Heather Tallis
    • , Katharine Kreis
    • , Lydia Olander
    • , Claudia Ringler
    • , David Ameyaw
    • , Mark E Borsuk
    • , Diana Fletschner
    • , Edward Game
    • , Daniel O Gilligan
    • , Marc Jeuland
    • , Gina Kennedy
    • , Yuta J Masuda
    • , Sumi Mehta
    • , Nicholas Miller
    • , Megan Parker
    • , Carmel Pollino
    • , Julie Rajaratnam
    • , David Wilkie
    • , Wei Zhang
    • , Selena Ahmed
    • , Oluyede C Ajayi
    • , Harold Alderman
    • , George Arhonditsis
    • , Ines Azevedo
    • , Ruchi Badola
    • , Rob Bailis
    • , Patricia Balvanera
    • , Emily Barbour
    • , Mark Bardini
    • , David N Barton
    • , Jill Baumgartner
    • , Tim G Benton
    • , Emily Bobrow
    • , Deborah Bossio
    • , Ann Bostrom
    • , Ademola Braimoh
    • , Eduardo Brondizio
    • , Joe Brown
    • , Benjamin P Bryant
    • , Ryan SD Calder
    • , Becky Chaplin-Kramer
    • , Alison Cullen
    • , Nicole DeMello
    • , Katherine L Dickinson
    • , Kristie L Ebi
    • , Heather E Eves
    • , Jessica Fanzo
    • , Paul J Ferraro
    • , Brendan Fisher
    • , Edward A Frongillo
    • , Gillian Galford
    • , Dennis Garrity
    • , Lydiah Gatere
    • , Andrew P Grieshop
    • , Nicola J Grigg
    • , Craig Groves
    • , Mary Kay Gugerty
    • , Michael Hamm
    • , Xiaoyue Hou
    • , Cindy Huang
    • , Marc Imhoff
    • , Darby Jack
    • , Andrew D Jones
    • , Rodd Kelsey
    • , Monica Kothari
    • , Ritesh Kumar
    • , Carl Lachat
    • , Ashley Larsen
    • , Mark Lawrence
    • , Fabrice DeClerck
    • , Phillip S Levin
    • , Edward Mabaya
    • , Jacqueline MacDonald Gibson
    • , Robert I McDonald
    • , Georgina Mace
    • , Ricardo Maertens
    • , Dorothy I Mangale
    • , Robin Martino
    • , Sara Mason
    • , Lyla Mehta
    • , Ruth Meinzen-Dick
    • , Barbara Merz
    • , Siwa Msangi
    • , Grant Murray
    • , Kris A Murray
    • , Celeste E Naude
    • , Nathaniel K Newlands
    • , Ephraim Nkonya
    • , Amber Peterman
    • , Tricia Petruney
    • , Hugh Possingham
    • , Jyotsna Puri
    • , Roseline Remans
    • , Lisa Remlinger
    • , Taylor H Ricketts
    • , Bedilu Reta
    • , Brian E Robinson
    • , Dilys Roe
    • , Joshua Rosenthal
    • , Guofeng Shen
    • , Drew Shindell
    • , Ben Stewart-Koster
    • , Terry Sunderland
    • , William J Sutherland
    • , Josh Tewksbury
    • , Heather Wasser
    • , Stephanie Wear
    • , Chris Webb
    • , Dale Whittington
    • , Marit Wilkerson
    • , Heidi Wittmer
    • , Benjamin DK Wood
    • , Stephen Wood
    • , Joyce Wu
    • , Gautam Yadama
    •  & Stephanie Zobrist

    Current Opinion in Environmental Sustainability (2019)

  • Increasing plant diversity with border crops reduces insecticide use and increases crop yield in urban agriculture

    • Nian-Feng Wan
    • , You-Ming Cai
    • , Yan-Jun Shen
    • , Xiang-Yun Ji
    • , Xiang-Wen Wu
    • , Xiang-Rong Zheng
    • , Wei Cheng
    • , Jun Li
    • , Yao-Pei Jiang
    • , Xin Chen
    • , Jacob Weiner
    • , Jie-Xian Jiang
    • , Ming Nie
    • , Rui-Ting Ju
    • , Tao Yuan
    • , Jian-Jun Tang
    • , Wei-Dong Tian
    • , Hao Zhang
    •  & Bo Li

    eLife (2018)

  • Exploiting ecosystem services in agriculture for increased food security

    • Riccardo Bommarco
    • , Giulia Vico
    •  & Sara Hallin

    Global Food Security (2018)