Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nodal–Activin pathway is a conserved neural induction signal in chordates

Abstract

Neural induction is the process through which pluripotent cells are committed to a neural fate. This first step of central nervous system formation is triggered by the ‘Spemann organizer’ in amphibians and by homologous embryonic regions in other vertebrates. Studies in classical vertebrate models have produced contrasting views about the molecular nature of neural inducers and no unifying scheme could be drawn. Moreover, how this process evolved in the chordate lineage remains unresolved. Here we show, by using graft and micromanipulation experiments, that the dorsal blastopore lip of the cephalochordate amphioxus is homologous to the vertebrate organizer and is able to trigger the formation of neural tissues in a host embryo. In addition, we demonstrate that Nodal–Activin is the main signal eliciting neural induction in amphioxus, and that it also functions as a bona fide neural inducer in the classical vertebrate model Xenopus. Together, our results allow us to propose that Nodal–Activin was a major factor for neural induction in the ancestor of chordates. This study further reveals the diversity of neural inducers used during chordate evolution and provides support against a universally conserved molecular explanation for this process.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The dorsal blastoporal lip of amphioxus is homologous to the vertebrate organizer.
Figure 2: The role of BMP in ectodermal cell-fate commitment.
Figure 3: Role of Nodal–Activin and FGF signalling pathways in ectoderm specification.
Figure 4: Nodal–Activin is the main signal triggering neural induction.
Figure 5: Nodal induces neural tissue in Xenopus.
Figure 6: Nodal–Activin signaling is required within the ectoderm for neural induction in Xenopus.

References

  1. Spemann, H. & Mangold, H. in Foundation of Experimental Embryology (eds Willer, B. H. & Oppenheimer, J. M.) 144–184 (Trans. Hamburger V., New York, 1924).

  2. Hemmati-Brivanlou, A. & Melton, D. Vertebrate embryonic cells will become nerve cells unless told otherwise. Cell 88, 13–17 (1997).

    CAS  Article  PubMed  Google Scholar 

  3. Stern, C. D. Neural induction: 10 years on since the ‘default model’. Curr. Opin. Cell Biol. 18, 692–697 (2006).

    CAS  Article  PubMed  Google Scholar 

  4. De Robertis, E. M. & Kuroda, H. Dorsal–ventral patterning and neural induction in Xenopus embryos. Annu. Rev. Cell Dev. Biol. 20, 285–308 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ozair, M. Z., Kintner, C. & Brivanlou, A. H. Neural induction and early patterning in vertebrates. Wiley Interdiscip. Rev. Dev. Biol. 2, 479–498 (2013).

    CAS  Article  PubMed  Google Scholar 

  6. Streit, A., Berliner, A. J., Papanayotou, C., Sirulnik, A. & Stern, C. D. Initiation of neural induction by FGF signalling before gastrulation. Nature 406, 74–78 (2000).

    CAS  Article  PubMed  Google Scholar 

  7. Wilson, S. I., Graziano, E., Harland, R., Jessell, T. M. & Edlund, T. An early requirement for FGF signalling in the acquisition of neural cell fate in the chick embryo. Curr. Biol. 10, 421–429 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. Launay, C., Fromentoux, V., Shi, D. L. & Boucaut, J. C. A truncated FGF receptor blocks neural induction by endogenous Xenopus inducers. Development 122, 869–880 (1996).

    CAS  PubMed  Google Scholar 

  9. Linker, C. & Stern, C. D. Neural induction requires BMP inhibition only as a late step, and involves signals other than FGF and Wnt antagonists. Development 131, 5671–5681 (2004).

    CAS  Article  PubMed  Google Scholar 

  10. Delaune, E., Lemaire, P. & Kodjabachian, L. Neural induction in Xenopus requires early FGF signalling in addition to BMP inhibition. Development 132, 299–310 (2005).

    CAS  Article  PubMed  Google Scholar 

  11. Marchal, L., Luxardi, G., Thome, V. & Kodjabachian, L. BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc. Natl Acad. Sci. USA 106, 17437–17442 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Darras, S. & Nishida, H. The BMP/CHORDIN antagonism controls sensory pigment cell specification and differentiation in the ascidian embryo. Dev. Biol. 236, 271–288 (2001).

    CAS  Article  PubMed  Google Scholar 

  13. Bertrand, V., Hudson, C., Caillol, D., Popovici, C. & Lemaire, P. Neural tissue in ascidian embryos is induced by FGF9/16/20, acting via a combination of maternal GATA and Ets transcription factors. Cell 115, 615–627 (2003).

    CAS  Article  PubMed  Google Scholar 

  14. Tung, T. C., Wu, S. C. & Tung, Y. Y. F. Experimental studies on the neural induction in amphioxus. Scientia Sinica XI, 805–820 (1962).

    Google Scholar 

  15. Yu, J. K. et al. Axial patterning in cephalochordates and the evolution of the organizer. Nature 445, 613–617 (2007).

    CAS  Article  PubMed  Google Scholar 

  16. Onai, T., Yu, J. K., Blitz, I. L., Cho, K. W. & Holland, L. Z. Opposing Nodal/Vg1 and BMP signals mediate axial patterning in embryos of the basal chordate amphioxus. Dev. Biol. 344, 377–389 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Yu, J.-K., Meulemans, D., McKeown, S. J. & Bronner-Fraser, M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res. 18, 1127–1132 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Kozmikova, I., Candiani, S., Fabian, P., Gurska, D. & Kozmik, Z. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev. Biol. 382, 538–554 (2013).

    CAS  Article  PubMed  Google Scholar 

  19. Bertrand, S. et al. Amphioxus FGF signaling predicts the acquisition of vertebrate morphological traits. Proc. Natl Acad. Sci. USA 108, 9160–9165 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Weng, W. & Stemple, D. L. Nodal signaling and vertebrate germ layer formation. Birth Defects Res. C Embryo Today 69, 325–332 (2003).

    CAS  Article  PubMed  Google Scholar 

  21. Tung, T. C., Wu, S. C. & Tung, Y. F. The development of isolated blastomeres of Amphioxus. Sci. Sin. 7, 1280–1320 (1958).

    CAS  PubMed  Google Scholar 

  22. Morov, A. R., Ukizintambara, T., Sabirov, R. M. & Yasui, K. Acquisition of the dorsal structures in chordate amphioxus. Open Biol. 6, 160062 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Agius, E., Oelgeschlager, M., Wessely, O., Kemp, C. & De Robertis, E. M. Endodermal Nodal-related signals and mesoderm induction in Xenopus. Development 127, 1173–1183 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Luxardi, G., Marchal, L., Thome, V. & Kodjabachian, L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 137, 417–426 (2010).

    CAS  Article  PubMed  Google Scholar 

  25. Vonica, A. & Brivanlou, A. H. The left–right axis is regulated by the interplay of Coco, Xnr1 and derrière in Xenopus embryos. Dev. Biol. 303, 281–294 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. Yan, B., Neilson, K. M. & Moody, S. A. foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation. Dev. Biol. 329, 80–95 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Gupta, R., Wills, A., Ucar, D. & Baker, J. Developmental enhancers are marked independently of zygotic Nodal signals in Xenopus. Dev. Biol. 395, 38–49 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Roure, A., Lemaire, P. & Darras, S. An otx/nodal regulatory signature for posterior neural development in ascidians. PLoS Genet. 10, e1004548 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mita, K. & Fujiwara, S. Nodal regulates neural tube formation in the Ciona intestinalis embryo. Dev. Genes Evol. 217, 593–601 (2007).

    CAS  Article  PubMed  Google Scholar 

  30. Ohtsuka, Y., Matsumoto, J., Katsuyama, Y. & Okamura, Y. Nodal signaling regulates specification of ascidian peripheral neurons through control of the BMP signal. Development 141, 3889–3899 (2014).

    CAS  Article  PubMed  Google Scholar 

  31. Camus, A., Perea-Gomez, A., Moreau, A. & Collignon, J. Absence of Nodal signaling promotes precocious neural differentiation in the mouse embryo. Dev. Biol. 295, 743–755 (2006).

    CAS  Article  PubMed  Google Scholar 

  32. Chang, C. & Harland, R. M. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation. Development 134, 3861–3872 (2007).

    CAS  Article  PubMed  Google Scholar 

  33. Jia, S., Wu, D., Xing, C. & Meng, A. Smad2/3 activities are required for induction and patterning of the neuroectoderm in zebrafish. Dev. Biol. 333, 273–284 (2009).

    CAS  Article  PubMed  Google Scholar 

  34. Joseph, E. M. & Melton, D. A. Xnr4: a Xenopus nodal-related gene expressed in the Spemann organizer. Dev. Biol. 184, 367–372 (1997).

    CAS  Article  PubMed  Google Scholar 

  35. Lapraz, F., Haillot, E. & Lepage, T. A deuterostome origin of the Spemann organiser suggested by Nodal and ADMPs functions in Echinoderms. Nat. Commun. 6, 8434 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Fuentes, M. et al. Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zoolog. B Mol. Dev. Evol. 308, 484–493 (2007).

    Article  Google Scholar 

  37. Fuentes, M. et al. Preliminary observations on the spawning conditions of the European amphioxus (Branchiostoma lanceolatum) in captivity. J. Exp. Zoolog. B Mol. Dev. Evol. 302, 384–391 (2004).

    Article  Google Scholar 

  38. Hirakow, R. & Kajita, N. Electron microscopic study of the development of Amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Acta. Anat. Nippon. 69, 1–13 (1994).

    CAS  PubMed  Google Scholar 

  39. Hirakow, R. & Kajita, N. Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the gastrula. J. Morphol. 207, 37–52 (1991).

    Article  Google Scholar 

  40. Nieuwkoop, P. D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (North Holland Publishing, 1994).

  41. Dolez, M., Nicolas, J. F. & Hirsinger, E. Laminins, via heparan sulfate proteoglycans, participate in zebrafish myotome morphogenesis by modulating the pattern of Bmp responsiveness. Development 138, 97–106 (2011).

    CAS  Article  PubMed  Google Scholar 

  42. Somorjai, I., Bertrand, S., Camasses, A., Haguenauer, A. & Escriva, H. Evidence for stasis and not genetic piracy in developmental expression patterns of Branchiostoma lanceolatum and Branchiostoma floridae, two amphioxus species that have evolved independently over the course of 200 Myr. Dev. Genes Evol. 218, 703–713 (2008).

    Article  PubMed  Google Scholar 

  43. Plouhinec, J.-L., Zakin, L., Moriyama, Y. & De Robertis, E. M. Chordin forms a self-organizing morphogen gradient in the extracellular space between ectoderm and mesoderm in the Xenopus embryo. Proc. Natl Acad. Sci. USA 110, 20372–20379 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Oulion, S., Bertrand, S., Belgacem, M. R., Le Petillon, Y. & Escriva, H. Sequencing and analysis of the Mediterranean amphioxus (Branchiostoma lanceolatum) transcriptome. PLoS ONE 7, e36554 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The laboratory of H.E. was supported by the CNRS and the ANR-16-CE12-0008-01 and S.B. was supported by the Institut Universitaire de France. This project was supported in L.K.’s laboratory by ANR BSV2-021-02 and by Fondation ARC. M.I. is supported by an ERC Starting Grant (grant agreement ERC-StG-LS2-637591) and the Spanish Ministry of Economy and Competitiveness (‘Centro de Excelencia Severo Ochoa 2013-2017’, SEV-2012-0208 to the CRG). Some of the Xenopus experiments were performed in the PiCSL-FBI core facility (IBDM, AMU-Marseille), member of the France-BioImaging national research infrastructure. Some of the amphioxus experiments were carried out on the Cytometry and Imaging Platform of the Observatoire Océanologique de Banyuls-sur-Mer. RNA sequencing was performed at the CRG Genomics facility. We thank S. Darras for technical help and M. Belgacem for amphioxus FGF1/2 in vitro production.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of this study was done by Y.L.P., L.K., H.E. and S.B.; the study was carried out by Y.L.P., G.L., P.S., M.C., A.L., L.S., M.I., H.E. and S.B.; writing of the original draft was done by Y.L.P., L.K., H.E. and S.B.; funding was acquired by M.I., L.K., H.E. and S.B.; this study was supervised by L.K., H.E. and S.B.

Corresponding authors

Correspondence to Laurent Kodjabachian, Hector Escriva or Stephanie Bertrand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims inpublished maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Figures 1–8, Supplementary Tables 1,2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Petillon, Y., Luxardi, G., Scerbo, P. et al. Nodal–Activin pathway is a conserved neural induction signal in chordates. Nat Ecol Evol 1, 1192–1200 (2017). https://doi.org/10.1038/s41559-017-0226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-017-0226-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing