Brief Communication | Published:

Nutrient-dependent growth underpinned the Ediacaran transition to large body size

Abstract

Macroscale rangeomorph fossils, with characteristic branching fronds, appear (571 Myr ago) after the Gaskiers glaciation (580 Myr ago). However, biological mechanisms of size growth and potential connections to ocean geochemistry were untested. Using micro-computerized tomography and photographic measurements, alongside mathematical and computer models, we demonstrate that growth of rangeomorph branch internodes declined as their relative surface area decreased. This suggests that frond size and shape were directly responsive to nutrient uptake.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Narbonne, G. M. Science 305, 1141–1144 (2004).

  2. 2.

    Hoyal Cuthill, J. F. & Conway Morris, S. Proc. Natl Acad. Sci. USA 111, 13122–13126 (2014).

  3. 3.

    Narbonne, G. M. & Gehling, J. G. Geology 31, 27–30 (2003).

  4. 4.

    Pu, J. P. et al. Geology 44, 955–958 (2016).

  5. 5.

    Butterfield, N. J. Precambrian Res. 173, 201–211 (2009).

  6. 6.

    Payne, J. L. et al. Proc. Natl Acad. Sci. USA 106, 24–27 (2009).

  7. 7.

    Yuan, X., Chen, Z., Xiao, C., Zhou, C. & Hua, H. Nature 470, 390–393 (2011).

  8. 8.

    Zhu, S. et al. Nat. Commun. 7, 11500 (2016).

  9. 9.

    Szathmary, E. & Maynard Smith, J. Nature 374, 227–232 (1995).

  10. 10.

    Sperling, E. A., Peterson, K. J. & Laflamme, M. Geobiology 9, 24–33 (2011).

  11. 11.

    Narbonne, G. M., Laflamme, M., Greentree, C. & Trusler, P. J. Paleontol. 83, 503–523 (2009).

  12. 12.

    Laflamme, M., Xiao, S. & Kowalewski, M. Proc. Natl Acad. Sci. USA 106, 14438–14443 (2009).

  13. 13.

    Canfield, D. E., Poulton, S. W. & Narbonne, G. M. Science 315, 92–95 (2007).

  14. 14.

    Runnegar, B. Alcheringa 6, 223–239 (1982).

  15. 15.

    Garcia Camacho, F. et al. Appl. Microbiol. Biotechnol. 73, 525–532 (2006).

  16. 16.

    Mills, D. B. et al. Proc. Natl Acad. Sci. USA 111, 4168–4172 (2014).

  17. 17.

    Budd, G. E. & Jensen, S. Biol. Rev. 92, 446–473 (2017).

  18. 18.

    Cavalier-Smith, T. Phil. Trans. R. Soc. B 372, 20151476 (2017).

  19. 19.

    Ghisalberti, M. et al. Curr. Biol. 24, 305–309 (2014).

  20. 20.

    Brasier, M. D. & Antcliffe, J. B. J. Geol. Soc. London 166, 363–384 (2009).

  21. 21.

    Sahoo, S. K. et al. Nature 489, 546–549 (2012).

  22. 22.

    Sperling, E. A. et al. Nature 523, 451–454 (2015).

  23. 23.

    Niklas, K. J. Ann. Bot 75, 217–227 (1995).

Download references

Acknowledgements

Specimen number ROM 63005 was loaned by the Royal Ontario Museum with the permission of the Rooms Museum, Newfoundland. CT-scanning was conducted by R. Asher at the Cambridge Biotomography Centre. Access to the specimen of Fig. 2d was provided at the South Australian Museum by J. Gehling and M.-A. Binnie, who found this fossil. This research was funded by an ELSI Origins Network (EON) Research Fellowship to J.F.H.C., supported by a grant from the John Templeton Foundation, and Palaeontological Association Research Grant number PA-RG201501 (J.F.H.C.). We thank N. Butterfield, A. Caulton and E. Smith for discussion of the manuscript.

Author information

J.F.H.C. designed and carried out the analysis; J.F.H.C. and S.C.M. co-wrote the paper.

Competing interests

The authors declare no competing financial interests.

Correspondence to Jennifer F. Hoyal Cuthill.

Electronic supplementary material

Supplementary Information

Supplementary Methods, Supplementary Figures 1–12, Supplementary References

Supplementary Tables

Supplementary Tables 1–5

Supplementary Code

Computer simulation code, MATLAB script in txt format

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Figure 1: Retrodeformed stem diameter measured from a 3D micro-CT volume rendering of A. abaculus cast ROM 63005.
Figure 2: Sequential stem internode volumes and lengths, from micro-CT and digital photographs of rangeomorph specimens.
Figure 3: Computer simulations of rangeomorph internode size growth.