Global hotspots and correlates of alien species richness across taxonomic groups


Human-mediated transport beyond biogeographic barriers has led to the introduction and establishment of alien species in new regions worldwide. However, we lack a global picture of established alien species richness for multiple taxonomic groups. Here, we assess global patterns and potential drivers of established alien species richness across eight taxonomic groups (amphibians, ants, birds, freshwater fishes, mammals, vascular plants, reptiles and spiders) for 186 islands and 423 mainland regions. Hotspots of established alien species richness are predominantly island and coastal mainland regions. Regions with greater gross domestic product per capita, human population density, and area have higher established alien richness, with strongest effects emerging for islands. Ants and reptiles, birds and mammals, and vascular plants and spiders form pairs of taxonomic groups with the highest spatial congruence in established alien richness, but drivers explaining richness differ between the taxa in each pair. Across all taxonomic groups, our results highlight the need to prioritize prevention of further alien species introductions to island and coastal mainland regions globally.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Established alien species richness in the 609 TDWG level-4 regions with data available per taxonomic group.
Figure 2: Hotspot and coldspot regions for cross-taxon established alien species richness across eight taxonomic groups, accounting for area and sampling effort.
Figure 3: Effects of area, climate, sampling effort, GDP per capita, human population density and whether a region is coastal on established alien species richness of eight taxonomic groups.


  1. 1

    di Castri, F. in Biological Invasions: A Global Perspective (eds Drake, J. A. ) 1–30 (Wiley, 1989).

    Google Scholar 

  2. 2

    Simberloff, D. et al. Impacts of biological invasions: what’s what and the way forward. Trends Ecol. Evol. 28, 58–66 (2013).

    Article  Google Scholar 

  3. 3

    Lewis, S. L. & Maslin, M. A. Defining the Anthropocene. Nature 519, 171–180 (2015).

    CAS  Article  Google Scholar 

  4. 4

    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).

    Article  Google Scholar 

  5. 5

    Seebens, H. et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob. Chang. Biol. 21, 4128–4140 (2015).

    Article  Google Scholar 

  6. 6

    Poessel, S. A. Beard, K. H., Callahan, C. M., Ferreira, R. B. & Stevenson, E. T. Biotic acceptance in introduced amphibians and reptiles in Europe and North America. Glob. Ecol. Biogeogr. 22, 192–201 (2013).

    Article  Google Scholar 

  7. 7

    Essl, F. et al. Socioeconomic legacy yields and invasion debt. Proc. Natl Acad. Sci. USA 108, 203–207 (2011).

    CAS  Article  Google Scholar 

  8. 8

    Jeschke, J. M . & Genovesi, P. Do biodiversity and human impact influence the introduction or establishment of alien mammals? Oikos 120, 57–64 (2011).

    Article  Google Scholar 

  9. 9

    Blackburn, T. M., Cassey, P. & Lockwood, J. L. The island biogeography of exotic bird species. Glob. Ecol. Biogeogr. 17, 246–251 (2008).

    Article  Google Scholar 

  10. 10

    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).

    CAS  Article  Google Scholar 

  11. 11

    Essl, F., Dullinger, S., Moser, D., Steinbauer, K. & Mang, T. Macroecology of global bryophyte invasions at different invasion stages. Ecography 38, 488–498 (2015).

    Article  Google Scholar 

  12. 12

    van Kleunen, M. et al. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015).

    CAS  Article  Google Scholar 

  13. 13

    Dyer, E. E. et al. The global distribution and drivers of alien bird species richness. PLoS Biol. 15, e2000942 (2017).

    Article  Google Scholar 

  14. 14

    Froese, R. & Pauly, D. (eds) FishBase v. 09/2015 (2015);

  15. 15

    Guénard, B., Weiser, M. D., Gomez, K., Narula, N. & Economo, E. P. The Global Ant Biodiversity Informatics (GABI) database: synthesizing data on ant species geographic distribution. Myrmecol. News 24, 83–89 (2017).

    Google Scholar 

  16. 16

    World Spider Catalog Version 17.0 (Natural History Museum Bern, 2015)

  17. 17

    Brummit, R. K. World Geographical Scheme for Recording Plant Distributions 2nd edn. (Hunt Institute for Botanical Documentation, 2001).

    Google Scholar 

  18. 18

    Meyer, C., Kreft, H., Guralnick, R. & Jetz, W. Global priorities for an effective information basis of biodiversity distributions. Nat. Commun. 6, 8221 (2015).

    Article  Google Scholar 

  19. 19

    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).

    Article  Google Scholar 

  20. 20

    Guénard, B., Weiser, M. D. & Dunn, R. R. Global models of ant diversity suggest regions where new discoveries are most likely are under disproportionate deforestation threat. Proc. Natl Acad. Sci. USA 109, 7368–7373 (2012).

    Article  Google Scholar 

  21. 21

    Pyšek, P. et al. Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc. Natl Acad. Sci. USA 107, 12157–12162 (2010).

    Article  Google Scholar 

  22. 22

    Gaston, K. J. Global patterns of biodiversity. Nature 405, 220–227 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Lambdon, P. W. et al. Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80, 101–149 (2008).

    Google Scholar 

  24. 24

    Denslow, J. S. Weeds in paradise: thoughts on the invasibility of tropical islands. Ann. Missouri Bot. Gard. 90, 119–127 (2003).

    Article  Google Scholar 

  25. 25

    Lonsdale, W. M. Global patterns of plant invasions and the concept of invasibility. Ecology 80, 1522–1536 (1999).

    Article  Google Scholar 

  26. 26

    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).

    Article  Google Scholar 

  27. 27

    Gallardo, B. & Aldridge, D. C. The “dirty-dozen”: socio-economic factors amplify the invasion potential of 12 high-risk aquatic invasive species in Great Britain and Ireland. J. Appl. Ecol. 50, 757–766 (2013).

    Article  Google Scholar 

  28. 28

    Gotzek, D. et al. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes. Mol. Ecol. 24, 374–388 (2015).

    Article  Google Scholar 

  29. 29

    Nentwig, W. Introduction, establishment rate, pathways and impact of spiders alien to Europe. Biol. Invas. 17, 2757–2778 (2015).

    Article  Google Scholar 

  30. 30

    Genovesi, P ., Bacher, S ., Kobelt, M ., Pascal, M . & Scalera, R. in Handbook of Alien Species in Europe (eds DAISIE ) 119–128 (Springer, 2009).

    Google Scholar 

  31. 31

    Qian, H. & Ricklefs, R. E. Global concordance in diversity patterns of vascular plants and terrestrial vertebrates. Ecol. Lett. 11, 547–553 (2008).

    Article  Google Scholar 

  32. 32

    Lever, C. in Encyclopedia of Biological Invasions (eds Simberloff, D. & Rejmánek, M. ) 1–4 (Univ. California Press, 2011).

    Google Scholar 

  33. 33

    Felemban, H. M. On the exotic birds imported into Jeddah, Saudi Arabia. Zool. Middle East 8, 15–16 (1993).

    Article  Google Scholar 

  34. 34

    Dyer, E. E ., Redding, D. W . & Blackburn, T. M. The global avian invasions atlas, a database of alien bird distributions worldwide. Sci. Data 4, 170041 (2017).

  35. 35

    Espinosa-Perez, H. & Ramirez, M. Exotic and invasive fishes in Mexico. Check List 11, 1627 (2015).

    Article  Google Scholar 

  36. 36

    McDowall, R. M. The Reed Field Guide to New Zealand Freshwater Fishes (Reed, 2000 ).

    Google Scholar 

  37. 37

    NIWA Atlas of NZ Freshwater Fishes (accessed 24 May 2017)

  38. 38

    Ellender, B. R. & Weyl, O. L. F. A review of current knowledge, risk and ecological impacts associated with non-native freshwater fish introductions in South Africa. Aquat. Invasions 9, 117–132 (2014).

    Article  Google Scholar 

  39. 39

    Skelton, P. H. A Complete Guide to the Freshwater Fishes of Southern Africa (Southern Book Publishers, 2001).

    Google Scholar 

  40. 40

    Invasive Species of Japan Database (Environmental Risk Research Center, National Institute for Environmental Studies, Japan, accessed 18 May 2016)

  41. 41

    Brazil Invasive Alien Species Database (Inter-American Biodiversity Information Network, accessed 17 May 2016)

  42. 42

    Ghosh, T., Powell, R. L., Elvidge, C. D., Baugh, K. E., Sutton, P. C. & Anderson, S. Shedding light on the global distribution of economic activity. Open Geogr. J. 3, 148–160 (2010).

    Google Scholar 

  43. 43

    Weigelt, P. & Kreft, H. Quantifying island isolation – insights from global patterns of insular plant species richness. Ecography 36, 417–429 (2013).

    Article  Google Scholar 

  44. 44

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team . nlme: Linear and nonlinear mixed effects models. R Package Version 3.1-128 (2016).

  45. 45

    Bjornstad, O.N. ncf: Spatial nonparametric covariance functions. R Package Version 1.1-7 (2016).

  46. 46

    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

    Google Scholar 

Download references


This research benefited from support from the European Commission (COST Action TD1209). The Deutsche Forschungsgemeinschaft supported H.S. (DFG, grant SE 1891/2-1), M.v.K. (KL 1866/9-1) and M.W. (FZT 118), the Austrian Science Foundation supported F.E., B.L. and D.M. (FWF, grant I2086-B16). P.P. and J.P. were supported by the Academy of Sciences of the Czech Republic (no. RVO 67985939), Praemium Academiae award to P.P. and Czech Science Foundation (project no. 14-36079G). C. Capinha was supported by a postdoctoral grant from the Portuguese Foundation for Science and Technology (FCT/MCTES) and POPH/FSE (EC) grant SFRH/BPD/84422/2012. E.G.-B. was supported by the Spanish Ministry of Economy and Competitiveness (projects CGL2013-43822-R and CGL2015-69311-REDT). C.M. was supported by the Volkswagen Foundation through a Freigeist Fellowship.

Author information




The GloNAF core team (M.v.K., P.P., W.D., F.E., J.P., M.W., H.K. and P.W.), T.M.B., H.S. and B.L. conceived the idea; W.D. coordinated data collation, and designed and led the analyses and writing with major inputs from F.E., D.M. M.v.K., P.P., H.K., M.W., J.P. and P.W., and further inputs from all other authors. Data were contributed by the GloNAF database for vascular plants, E.P.E. and B.G. for ants, C. Capinha, F.E., H.S. and P.G.-D. for amphibians and reptiles, T.M.B. and E.E.D. for birds, C. Casal, E.G.-B., P.F. and N.E.M. for fishes, P.C. and S.L.S for mammals, and W.N. for spiders. D.M. collected and calculated data on region area and sampling effort. C.M. contributed data on completeness of native species richness inventories.

Corresponding author

Correspondence to Wayne Dawson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Three Supplementary Figures; six Supplementary Tables (PDF 945 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dawson, W., Moser, D., van Kleunen, M. et al. Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1, 0186 (2017).

Download citation

Further reading