Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Island biodiversity conservation needs palaeoecology


The discovery and colonization of islands by humans has invariably resulted in their widespread ecological transformation. The small and isolated populations of many island taxa, and their evolution in the absence of humans and their introduced taxa, mean that they are particularly vulnerable to human activities. Consequently, even the most degraded islands are a focus for restoration, eradication, and monitoring programmes to protect the remaining endemic and/or relict populations. Here, we build a framework that incorporates an assessment of the degree of change from multiple baseline reference periods using long-term ecological data. The use of multiple reference points may provide information on both the variability of natural systems and responses to successive waves of cultural transformation of island ecosystems, involving, for example, the alteration of fire and grazing regimes and the introduction of non-native species. We provide exemplification of how such approaches can provide valuable information for biodiversity conservation managers of island ecosystems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: To encourage the use of palaeoecological datasets in conservation we ideally need freely available online datasets.
Figure 2: Conceptual diagram summarizing the main concepts discussed within the text and the suggested management actions.
Figure 3: Two palaeoecological examples from New Zealand showing different potential conservation practices.
Figure 4: Summary time-series from a sedimentary sequence from Tenerife (Canary Islands).


  1. 1

    Caujapé-Castells, J. et al. Conservation of oceanic island floras: Present and future global challenges. Persp. Plant Ecol. Evol. System. 12, 107–129 (2010).

    Article  Google Scholar 

  2. 2

    Vitousek, P. M. Oceanic islands as model systems for ecological studies. J. Biogeogr. 29, 573–582 (2002).

    Article  Google Scholar 

  3. 3

    Kaiser-Bunbury, C. N., Traveset, A. & Hansen, D. M. Conservation and restoration of plant–animal mutualisms on oceanic islands. Persp. Plant Ecol. Evol. System. 12, 131–143 (2010).

    Article  Google Scholar 

  4. 4

    Kueffer, C. et al. A global comparison of plant invasions on oceanic islands. Persp. Plant Ecol. Evol. System. 12, 145–161 (2010).

    Article  Google Scholar 

  5. 5

    Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl Acad. Sci. USA 113, 4033–4038 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Avery, J. D., Fonseca, D. M., Campagne, P. & Lockwood, J. L. Cryptic introductions and the interpretation of island biodiversity. Mol. Ecol. 22, 2313–2324 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Whittaker R. J. & Fernández-Palacios J. M. Island Biogeography: Ecology, Evolution, and Conservation. (Oxford Univ. Press, 2007).

    Google Scholar 

  8. 8

    Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9

    Bellingham, B. J. et al. New Zealand island restoration: seabirds, predators, and the importance of history. New Zeal. J. Ecol. 34, 115–136 (2010).

    Google Scholar 

  10. 10

    Lyver, P. O. B. et al. Looking back for the future: local knowledge and palaeoecology inform biocultural restoration of coastal ecosystems in New Zealand. Hum. Ecol. 43, 681–695 (2015).

    Article  Google Scholar 

  11. 11

    Burney, D. A. Tropical islands as paleoecological laboratories: gauging the consequences of human arrival. Hum. Ecol. 25, 437–457 (1997).

    Article  Google Scholar 

  12. 12

    Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2009).

    PubMed  Article  Google Scholar 

  13. 13

    Dietl, G. P. et al. Conservation paleobiology: leveraging knowledge of the past to inform conservation and restoration. Annu. Rev. Earth Planet. Sci. 43, 79 (2015).

    CAS  Article  Google Scholar 

  14. 14

    Gillson, L., Ladle, R. J. & Araújo, M. B. in Conservation Biogeography 31–44 (John Wiley & Sons, 2011).

    Book  Google Scholar 

  15. 15

    Willis, K. J., Bailey, R. M., Bhagwat, S. A. & Birks, H. J. B. Biodiversity baselines, thresholds and resilience: testing predictions and assumptions using palaeoecological data. Trends Ecol. Evol. 25, 583–591 (2010).

    CAS  PubMed  Article  Google Scholar 

  16. 16

    Wilmshurst, J. M. et al. Use of pollen and ancient DNA as conservation baselines for offshore islands in New Zealand. Conserv. Biol. 28, 202–212 (2014).

    PubMed  Article  Google Scholar 

  17. 17

    Froyd, C. A. et al. The ecological consequences of megafaunal loss: giant tortoises and wetland biodiversity. Ecol. Lett. 17, 144–154 (2014).

    PubMed  Article  Google Scholar 

  18. 18

    Wood, J. R., Wilmshurst, J. M., Worthy, T. H. & Cooper, A. Sporormiella as a proxy for non-mammalian herbivores in island ecosystems. Quat. Sci. Rev. 30, 915–920 (2011).

    Article  Google Scholar 

  19. 19

    Burney, D. A. & Burney, L. P. Paleoecology and “inter-situ” restoration on Kaua’i, Hawai’i. Front. Ecol. Environ. 5, 483–490 (2007).

    Article  Google Scholar 

  20. 20

    Callicott, J. B. The pragmatic power and promise of theoretical environmental ethics: forging a new discourse. Environ. Values 11, 3–25 (2002).

    Article  Google Scholar 

  21. 21

    van Leeuwen, J. F. N. et al. Fossil pollen as a guide to conservation in the Galápagos. Science 322, 1206–1206 (2008).

    CAS  PubMed  Article  Google Scholar 

  22. 22

    Delisle, F., Lavoie, C., Jean, M. & Lachance, D. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. J. Biogeogr. 30, 1033–1042 (2003).

    Article  Google Scholar 

  23. 23

    Cañellas-Boltà, N., Rull, V., Sáez, A., Prebble, M. & Margalef, O. First records and potential palaeoecological significance of Dianella (Xanthorrhoeaceae), an extinct representative of the native flora of Rapa Nui (Easter Island). Veg. Hist. Archaeobot. 23, 331–338 (2014).

    Article  Google Scholar 

  24. 24

    Froyd, C. A. & Willis, K. J. Emerging issues in biodiversity & conservation management: the need for a palaeoecological perspective. Quat. Sci. Rev. 27, 1723–1732 (2008).

    Article  Google Scholar 

  25. 25

    Willis, K. J. et al. How can a knowledge of the past help to conserve the future? Biodiversity conservation and the relevance of long-term ecological studies. Philos. Trans. R. Soc. Lon. B 362, 175–187 (2007).

    Article  Google Scholar 

  26. 26

    Bean, A. R. A new system for determining which plant species are indigenous in Australia. Aust. Syst. Bot. 20, 1–43 (2007).

    Article  Google Scholar 

  27. 27

    Carlton, J. T. Biological invasions and cryptogenic species. Ecology 77, 1653–1655 (1996).

    Article  Google Scholar 

  28. 28

    Wilmshurst, J. M., McGlone, M. S. & Turney, C. S. M. Long-term ecology resolves the timing, region of origin and process of establishment for a disputed alien tree. AoB Plants 7, plv104 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29

    Benning, T. L., LaPointe, D., Atkinson, C. T. & Vitousek, P. M. Interactions of climate change with biological invasions and land use in the Hawaiian Islands: modeling the fate of endemic birds using a geographic information system. Proc. Natl Acad. Sci. USA 99, 14246–14249 (2002).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Coffey, E. E. D., Froyd, C. A. & Willis, K. J. When is an invasive not an invasive? Macrofossil evidence of doubtful native plant species in the Galápagos Islands. Ecology 92, 805–812 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  31. 31

    de Boer, E. J. et al. Multi-proxy reconstruction of environmental dynamics and colonization impacts in the Mauritian uplands. Palaeogeogr. Palaeoclim. Palaeoecol. 383–384, 42–51 (2013).

  32. 32

    de Nascimento, L., Willis, K. J., Fernández-Palacios, J. M., Criado, C. & Whittaker, R. J. The long-term ecology of the lost forests of La Laguna, Tenerife (Canary Islands). J. Biogeogr. 36, 499–514 (2009).

    Article  Google Scholar 

  33. 33

    van Leeuwen, J. F. et al. Native or introduced? Fossil pollen and spores may say. An example from the Azores Islands. Neobiota 6, 27–34 (2005).

    Google Scholar 

  34. 34

    Evans, J. Pistia stratiotes L. in the Florida Peninsula: biogeographic evidence and conservation implications of native tenure for an ‘invasive’ aquatic plant. Conserv. Soc. 11, 233–246 (2013).

    Article  Google Scholar 

  35. 35

    Rosati, L., Masi, A., Giardini, M. & Marignani, M. Under the shadow of a big plane tree: Why Platanus orientalis should be considered an archaeophyte in Italy. Plant Biosyst. 149, 185–194 (2015).

    Article  Google Scholar 

  36. 36

    Agudo, R., Rico, C., Vilà, C., Hiraldo, F. & Donázar, J. A. The role of humans in the diversification of a threatened island raptor. BMC Evol. Biol. 10, 384 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37

    Roebroeks, W. & Villa, P. On the earliest evidence for habitual use of fire in Europe. Proc. Natl Acad. Sci. USA 108, 5209–5214 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38

    Rolett, B. & Diamond, J. Environmental predictors of pre-European deforestation on Pacific islands. Nature 431, 443–446 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Conedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quat. Sci. Rev. 28, 555–576 (2009).

    Article  Google Scholar 

  40. 40

    Scott, A. C., Hardiman, M., Pinter, N. & Anderson, R. S. Evidence of fire regimes in the Pleistocene of the California Islands. SAGVNTVM Extra 11, 59–60 (2011).

    Google Scholar 

  41. 41

    Iglesias, V., Yospin, G. I. & Whitlock, C. Reconstruction of fire regimes through integrated paleoecological proxy data and ecological modeling. Front. Plant Sci. 5, 785 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Gil-Romera, G. et al. Biomass-modulated fire dynamics during the Last Glacial–Interglacial Transition at the Central Pyrenees (Spain). Palaeogeogr. Palaeoclim. Palaeoecol. 402, 113–124 (2014).

    Article  Google Scholar 

  43. 43

    Perry, G. L. W., Wilmshurst, J. M., Ogden, J. & Enright, N. J. Exotic mammals and invasive plants alter fire-related thresholds in southern temperate forested landscapes. Ecosystems 18, 1290–1305 (2015).

    Article  Google Scholar 

  44. 44

    Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. BioScience 54, 677–688 (2004).

    Article  Google Scholar 

  45. 45

    McWethy, D. B. et al. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proc. Natl Acad. Sci. USA 107, 21343–21348 (2010).

    CAS  PubMed  Article  Google Scholar 

  46. 46

    McWethy, D. B., Wilmshurst, J. M., Whitlock, C., Wood, J. R. & McGlone, M. S. A high-resolution chronology of rapid forest transitions following Polynesian arrival in New Zealand. PLoS ONE 9, e111328 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47

    Perry, G. L. W., Wilmshurst, J. M., McGlone, M. S. & Napier, A. Reconstructing spatial vulnerability to forest loss by fire in pre-historic New Zealand. Glob. Ecol. Biogeogr. 21, 1029–1041 (2012).

    Article  Google Scholar 

  48. 48

    Higuera-Gundy, A. et al. A 10,300 14C yr record of climate and vegetation change from Haiti. Quat. Res. 52, 159–170 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Leys, B., Finsinger, W. & Carcaillet, C. Historical range of fire frequency is not the Achilles’ heel of the Corsican black pine ecosystem. J. Ecol. 102, 381–395 (2014).

    Article  Google Scholar 

  50. 50

    Garzón-Machado, V., del-Arco-Aguilar, M. J. & Pérez-de-Paz, P. L. Threat or threatened species? A paradox in conservation biology. J. Nat. Conserv. 20, 228–230 (2012).

    Article  Google Scholar 

  51. 51

    Bowen, L. & Vuren, D. V. Insular endemic plants lack defenses against herbivores. Conserv. Biol. 11, 1249–1254 (1997).

    Article  Google Scholar 

  52. 52

    Fraser, I. & Chisholm, T. Conservation or cultural heritage? Cattle grazing in the Victoria Alpine National Park. Ecol. Econ. 33, 63–75 (2000).

    Article  Google Scholar 

  53. 53

    Campbell, K. & Donlan, C. J. Feral goat eradications on Islands. Conserv. Biol. 19, 1362–1374 (2005).

    Article  Google Scholar 

  54. 54

    Garzón-Machado, V. et al. Strong negative effect of alien herbivores on endemic legumes of the Canary pine forest. Biol. Conserv. 143, 2685–2694 (2010).

    Article  Google Scholar 

  55. 55

    Peco, B., Sánchez, A. M. & Azcárate, F. M. Abandonment in grazing systems: consequences for vegetation and soil. Agr. Ecosyst. Environ. 113, 284–294 (2006).

    Article  Google Scholar 

  56. 56

    Burney, D. A., Robinson, G. S. & Burney, L. P. Sporormiella and the late Holocene extinctions in Madagascar. Proc. Natl Acad. Sci. USA 100, 10800–10805 (2003).

    CAS  PubMed  Article  Google Scholar 

  57. 57

    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Hansen, D. M. Non-native megaherbivores: the case for novel function to manage plant invasions on islands. AoB Plants 7, plv085 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59

    Chapuis, J. L. et al. Eradication of invasive herbivores: usefulness and limits for biological conservation in a changing world. Anim. Conserv. 14, 471–473 (2011).

    Article  Google Scholar 

  60. 60

    Schweizer, D., Jones, H. P. & Holmes, N. D. Literature review and meta-analysis of vegetation responses to goat and European rabbit eradications on islands. Pacific Sci. 70, 55–71 (2015).

    Article  Google Scholar 

  61. 61

    Innes, J. et al. Effect of grazing on ship rat density in forest fragments of lowland Waikato, New Zealand. New Zeal. J. Ecol. 34, 227–232 (2010).

    Google Scholar 

  62. 62

    Veitch, C.R & Clout, M. N. (eds) Turning the Tide: The Eradication of Invasive Species (IUCN, 2002).

    Google Scholar 

  63. 63

    Bergstrom, D. M. et al. Indirect effects of invasive species removal devastate World Heritage Island. J. Appl. Ecol. 46, 73–81 (2009).

    Article  Google Scholar 

  64. 64

    Hansen, D. M., Donlan, C. J., Griffiths, C. J. & Campbell, K. J. Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions. Ecography 33, 272–284 (2010).

    Google Scholar 

  65. 65

    Wood, J. R., Wilmshurst, J. M., Turney, C. S. M. & Fogwill, C. J. Palaeoecological signatures of vegetation change induced by herbivory regime shifts on subantarctic Enderby Island. Quat. Sci. Rev. 134, 51–58 (2016).

    Article  Google Scholar 

  66. 66

    Baker, A. G., Bhagwat, S. A. & Willis, K. J. Do dung fungal spores make a good proxy for past distribution of large herbivores? Quat. Sci. Rev. 62, 21–31 (2013).

    Article  Google Scholar 

  67. 67

    Davis, O. K. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat. Res. 28, 290–294 (1987).

    Article  Google Scholar 

  68. 68

    Gill, J. L. et al. Linking abundances of the dung fungus Sporormiella to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. J. Ecol. 101, 1125–1136 (2013).

    Article  Google Scholar 

  69. 69

    Raczka, M. F., Bush, M. B., Folcik, A. M. & McMichael, C. H. Sporormiella as a tool for detecting the presence of large herbivores in the Neotropics. Biota Neotropica 16, e20150090 (2016).

    Article  Google Scholar 

  70. 70

    Athens, J. S. Rattus exulans and the catastrophic disappearance of Hawai’i's native lowland forest. Biol. Invasions 11, 1489 (2008).

    Article  Google Scholar 

  71. 71

    Illera, J. C., Rando, J. C., Richardson, D. S. & Emerson, B. C. Age, origins and extinctions of the avifauna of Macaronesia: a synthesis of phylogenetic and fossil information. Quat. Sci. Rev. 50, 14–22 (2012).

    Article  Google Scholar 

  72. 72

    Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (Univ. Chicago Press, 2006).

    Google Scholar 

  73. 73

    Taylor, R. H. How the Macquaire island parakeet became extinct. New Zeal. J. Ecol. 2, 42–45 (1979).

    Google Scholar 

  74. 74

    Lomolino, M. V. et al. Of mice and mammoths: generality and antiquity of the island rule. J. Biogeography 40, 1427–1439 (2013).

    Article  Google Scholar 

  75. 75

    Rijsdijk, K. F. et al. A review of the dodo and its ecosystem: insights from a vertebrate concentration Lagerstätte in Mauritius. J. Vert. Paleontol. 35, 3–20 (2015).

    Article  Google Scholar 

  76. 76

    de Boer, E. J. et al. A deadly cocktail: how a drought around 4200 cal. yr BP caused mass mortality events at the infamous ‘dodo swamp’ in Mauritius. Holocene 25, 758–771 (2015).

    Article  Google Scholar 

  77. 77

    Graham, R. W. et al. Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Wilmshurst, J. M., McGlone, M. S. & Partridge, T. R. A late Holocene history of natural disturbance in lowland podocarp/hardwood forest, Hawke's Bay, New Zealand. New Zeal. J. Bot. 35, 79–96 (1997).

    Article  Google Scholar 

  79. 79

    Wilmshurst, J. M., McGlone, M. S., Leathwick, J. R. & Newnham, R. M. A pre-deforestation pollen-climate calibration model for New Zealand and quantitative temperature reconstructions for the past 18 000 years BP. J. Quat. Sci. 22, 535–547 (2007).

    Article  Google Scholar 

  80. 80

    Haberle, S. G. Late Quaternary vegetation dynamics and human impact on Alexander Selkirk Island, Chile. J. Biogeogr. 30, 239–255 (2003).

    Article  Google Scholar 

  81. 81

    Gillson, L. & Marchant, R. From myopia to clarity: sharpening the focus of ecosystem management through the lens of palaeoecology. Trends Ecol. Evol. 29, 317–325 (2014).

    PubMed  Article  Google Scholar 

  82. 82

    McCarroll, J., Chambers, F. M., Webb, J. C. & Thom, T. Using palaeoecology to advise peatland conservation: An example from West Arkengarthdale, Yorkshire, UK. J. Nat. Conserv. 30, 90–102 (2016).

    Article  Google Scholar 

  83. 83

    Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science (2017).

    PubMed  Article  CAS  Google Scholar 

Download references


We thank the participants of the Island Biology conference 2014 and 2016 for many animated discussions on this topic. S.N. was supported by the VISTA programme from the Norwegian Academy of Science and Letters (Project number 6158). L.d.N. was supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 700952. J.M.F.P. and L.d.N. attendance to the Island Biology Conferences 2014 and 2016 was supported by the University of La Laguna through the “Campus Excelencia Atlántico Tricontinental ULL-ULPGC” and the “Ayudas a Proyectos Puente al Plan Estatal de I+D+I, Plan Propio de Investigación 2016”, respectively. C.A.F. was supported by the Climate Change Consortium of Wales. J.M.W. was supported by Core Funding for Crown Research Institutes, from the New Zealand Ministry of Business, Innovation and Employment's Science and Innovation Group.

Author information




S.N. lead the Perspective and wrote the paper together with all authors: L.d.N., C.F., J.M.W., E.J.d.B., E.E.D.C., R.J.W., J.M.F.P. and K.J.W. All authors contributed in the discussion.

Corresponding author

Correspondence to Sandra Nogué.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nogué, S., de Nascimento, L., Froyd, C. et al. Island biodiversity conservation needs palaeoecology. Nat Ecol Evol 1, 0181 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing