Competition-induced starvation drives large-scale population cycles in Antarctic krill

Abstract

Antarctic krill (Euphausia superba)—one of the most abundant animal species on Earth—exhibits a five to six year population cycle, with oscillations in biomass exceeding one order of magnitude. Previous studies have postulated that the krill cycle is induced by periodic climatological factors, but these postulated drivers neither show consistent agreement, nor are they supported by quantitative models. Here, using data analysis complemented with modelling of krill ontogeny and population dynamics, we identify intraspecific competition for food as the main driver of the krill cycle, while external climatological factors possibly modulate its phase and synchronization over large scales. Our model indicates that the cycle amplitude increases with reduction of krill loss rates. Thus, a decline of apex predators is likely to increase the oscillation amplitude, potentially destabilizing the marine food web, with drastic consequences for the entire Antarctic ecosystem.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Anatomy of the krill population cycle, Palmer LTER versus model.
Figure 2: Mechanism of the multi-annual cycles in krill biomass.
Figure 3: Effect of interannual variations in algal productivity on krill population dynamics and synchrony.

References

  1. 1

    Hewitt, R. P., Demer, D. A. & Emery, J. H. An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat. Living Resour. 16, 205–213 (2003).

    Google Scholar 

  2. 2

    Quetin, L. B. & Ross, R. M. Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar. Ecol. Prog. Ser. 259, 185–200 (2003).

    Google Scholar 

  3. 3

    Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).

    Google Scholar 

  4. 4

    Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).

    Google Scholar 

  5. 5

    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    CAS  Google Scholar 

  6. 6

    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    CAS  PubMed  Google Scholar 

  7. 7

    Knox, G. A. Biology of the Southern Ocean 2nd edn (CRC, 2006).

    Google Scholar 

  8. 8

    Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).

    Google Scholar 

  9. 9

    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

    CAS  PubMed  Google Scholar 

  10. 10

    Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Phil. Trans. R. Soc. B 362, 67–94 (2007).

    PubMed  Google Scholar 

  11. 11

    Loeb, V. in The Impact of Environmental Variability on Ecological Systems (eds Vasseur, D. A. & McCann, K. S. ) 197–225 (Springer, 2007).

    Google Scholar 

  12. 12

    Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. I 101, 54–70 (2015).

    Google Scholar 

  13. 13

    Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct. Sci. 19, 253–266 (2007).

    Google Scholar 

  14. 14

    Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience 56, 111–120 (2006).

    Google Scholar 

  15. 15

    Ross, R. M., Quetin, L. B. & Kirsch, E. Effect of temperature on developmental times and survival of early larval stages of Euphausia superba Dana. J. Exp. Mar. Biol. Ecol. 121, 55–71 (1988).

    Google Scholar 

  16. 16

    Meyer, B. & Oettl, B. Effects of short-term starvation on composition metabolism of larval Antarctic krill, Euphausia superba. Mar. Ecol. Prog. Ser. 292, 263–270 (2005).

    CAS  Google Scholar 

  17. 17

    Ikeda, T. & Dixon, P. Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. J. Exp. Mar. Biol. Ecol. 62, 143–151 (1982).

    Google Scholar 

  18. 18

    Ross, R. M., Quetin, L. B. & Haberman, K. L. Interannual and seasonal variability in short-term grazing impact of Euphausia superba in nearshore and offshore waters west of the Antarctic Peninsula. J. Mar. Syst. 17, 261–273 (1998).

    Google Scholar 

  19. 19

    Moran, P. A. P. The statistical analysis of the Canadian lynx cycle. Aust. J. Zool. 1, 291–298 (1953).

    Google Scholar 

  20. 20

    Massie, T. M., Weithoff, G., Kuckländer, N., Gaedke, U. & Blasius, B. Enhanced Moran effect by spatial variation in environmental autocorrelation. Nat. Commun. 6, 5993 (2015).

    CAS  PubMed  Google Scholar 

  21. 21

    Smith, L. V. et al. Preliminary investigation into the stimulation of phytoplankton photophysiology and growth by whale faeces. J. Exp. Mar. Biol. Ecol. 446, 1–9 (2013).

    Google Scholar 

  22. 22

    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Phil. Trans. R. Soc. B 362, 113–148 (2007).

    CAS  PubMed  Google Scholar 

  23. 23

    Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. Lond. B 268, 377–384 (2001).

    CAS  Google Scholar 

  24. 24

    Abrams, P. A., Brassil, C. E. & Holt, R. D. Dynamics and responses to mortality rates of competing predators undergoing predator–prey cycles. Theor. Popul. Biol. 64, 163–176 (2003).

    PubMed  Google Scholar 

  25. 25

    Fraser, W. R. & Hofmann, E. E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).

    Google Scholar 

  26. 26

    Pennington, M. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286 (1983).

    Google Scholar 

  27. 27

    Atkinson, A. et al. Fitting Euphausia superba into Southern Ocean food-web models: a review of data sources and their limitations. CCAMLR Sci. 19, 219–245 (2012).

    Google Scholar 

  28. 28

    Pakhomov, E. A. Demographic studies of Antarctic krill Euphausia superba in the Cooperation and Cosmonaut seas(Indian sector of the Southern Ocean). Mar. Ecol. Prog. Ser. 119, 45–61 (1995).

    Google Scholar 

  29. 29

    Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37 (2012).

    Google Scholar 

  30. 30

    de Roos, A. M & Persson, L. Population and Community Ecology of Ontogenetic Development (Princeton Univ. Press, 2013).

    Google Scholar 

  31. 31

    De Roos, A. M., Diekmann, O. & Metz, J. A. J. Studying the dynamics of structured population models: a versatile technique and its application to Daphnia. Am. Nat. 139, 123–147 (1992).

    Google Scholar 

  32. 32

    Quetin, L. B. & Ross, R. M. Depth distribution of developing Euphausia superba embryos, predicted from sinking rates. Mar. Biol. 79, 47–53 (1984).

    Google Scholar 

  33. 33

    Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).

    Google Scholar 

  34. 34

    Meyer, B. et al. Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614 (2009).

    CAS  Google Scholar 

  35. 35

    Lowe, A. T., Ross, R. M., Quetin, L. B., Vernet, M. & Fritsen, C. H. Simulating larval Antarctic krill growth and condition factor during fall and winter in response to environmental variability. Mar. Ecol. Prog. Ser. 452, 27–43 (2012).

    Google Scholar 

  36. 36

    Harrington, S. A. & Ikeda, T. Laboratory observations on spawning, brood size and egg hatchability of the Antarctic krill Euphausia superba from Prydz Bay, Antarctica. Mar. Biol. 92, 231–235 (1986).

    Google Scholar 

  37. 37

    Siegel, V. & Loeb, V. Length and age at maturity of Antarctic krill. Antarct. Sci. 6, 479–482 (1994).

    Google Scholar 

  38. 38

    Atkinson, A., Meyer, B., Bathmann, U., Hagen, W. & Schmidt, K. Feeding and energy budget of Antarctic krill Euphausia superba at the onset of winter: II. Juveniles and adults. Limnol. Oceanogr. 47, 953–966 (2002).

    Google Scholar 

  39. 39

    Meyer, B. et al. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398, 1–18 (2010).

    CAS  Google Scholar 

  40. 40

    Ross, R. M., Quetin, L. B., Baker, K. S., Vernet, M. & Smith, R. C. Growth limitation in young Euphausia superba under field conditions. Limnol. Oceanogr. 45, 31–43 (2000).

    Google Scholar 

  41. 41

    Englund, G. & Leonardsson, K. Scaling up the functional response for spatially heterogeneous systems. Ecol. Lett. 11, 440–449 (2008).

    PubMed  Google Scholar 

  42. 42

    Hofmann, E. E. & Lascara, C. M. Modeling the growth dynamics of Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 194, 219–231 (2000).

    Google Scholar 

  43. 43

    Gentleman, W., Leising, A., Frost, B., Strom, S. & Murray, J. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res. II. 50, 2847–2876 (2003).

    CAS  Google Scholar 

  44. 44

    Ryabov, A. B., Morozov, A. & Blasius, B. Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs. Ecol. Lett. 18, 1262–1269 (2015).

    PubMed  Google Scholar 

  45. 45

    Sailley, S. F. et al. Carbon fluxes and pelagic ecosystem dynamics near two Western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Mar. Ecol. Prog. Ser. 492, 253–272 (2013).

    Google Scholar 

  46. 46

    Kawaguchi, S., Candy, S. G., King, R., Naganobu, M. & Nicol, S. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region. Mar. Ecol. Prog. Ser. 306, 1–15 (2006).

    Google Scholar 

  47. 47

    Tarling, G. A. et al. Recruitment of Antarctic krill Euphausia superba in the South Georgia region: adult fecundity and the fate of larvae. Mar. Ecol. Prog. Ser. 331, 161–179 (2007).

    Google Scholar 

  48. 48

    Pakhomov, E. A. Natural age-dependent mortality rates of Antarctic krill Euphausia superba Dana in the Indian sector of the Southern Ocean. Polar Biol. 15, 69–71 (1995).

    Google Scholar 

  49. 49

    Brinton, E. & Townsend, A. W. Regional relationships between development and growth in larvae of Antarctic krill, Euphausia superba, from field samples. J. Crustacean Biol. 4, 224–246 (1984).

    Google Scholar 

  50. 50

    Behrenfeld, M. J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91, 977–989 (2010).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Atkinson, L. B. Quetin and R. M. Ross for useful comments on the manuscript; A.B.R. acknowledges support from the Helmholtz Virtual Institute PolarTime (VH-VI-500); A.M.d.R. is supported by funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 322814. This work contributes to the PACES (Polar Regions and Coasts in a changing Earth System) program (Topic 1, WP 5) of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Data on krill abundance and biomass were retrieved from the Palmer LTER data archive (http://pal.lternet.edu/data) and data on size distributions were provided by L. B. Quetin and R. M. Ross. The Palmer LTER research was supported by the National Science Foundation, Office of Polar Programs, under Award Nos. OPP-9011927, OPP-9632763, OPP-0217282, ANT-1010688 and PLR-1440435, the Regents of the University of California, the University of California at Santa Barbara, and the Marine Science Institute, UCSB.

Author information

Affiliations

Authors

Contributions

All authors designed the research; A.B.R., A.M.d.R., B.B. developed the model; A.B.R., S.K., B.M. parametrized the model, A.B.R. performed computer experiments and data analysis; A.B.R. and B.B. with contributions from other authors wrote the paper.

Corresponding author

Correspondence to Alexey B. Ryabov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–5 (PDF 1500 kb)

Supplementary Code

C++ source code of the ontogenetic krill model. The archive includes computer model C++ code and additional files, which specify the initial conditions, model parameters, and settings tailoring the model output. All files should be copied into the same folder and compiled with gcc or a similar C++ compiler. The parameters of krill and resource dynamical model are specified in params.ini, the parameters of the simulation output, initial conditions, etc. are specified in the files named “krill.*”. To solve the differential equations, we use the Escalator Boxcar Train approach, see https://staff.fnwi.uva.nl/a.m.deroos/EBT/ for a detailed description of the solver setup. Any additional information can be requested from the corresponding author. (ZIP 94 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryabov, A., de Roos, A., Meyer, B. et al. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat Ecol Evol 1, 0177 (2017). https://doi.org/10.1038/s41559-017-0177

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing