Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competition-induced starvation drives large-scale population cycles in Antarctic krill

Abstract

Antarctic krill (Euphausia superba)—one of the most abundant animal species on Earth—exhibits a five to six year population cycle, with oscillations in biomass exceeding one order of magnitude. Previous studies have postulated that the krill cycle is induced by periodic climatological factors, but these postulated drivers neither show consistent agreement, nor are they supported by quantitative models. Here, using data analysis complemented with modelling of krill ontogeny and population dynamics, we identify intraspecific competition for food as the main driver of the krill cycle, while external climatological factors possibly modulate its phase and synchronization over large scales. Our model indicates that the cycle amplitude increases with reduction of krill loss rates. Thus, a decline of apex predators is likely to increase the oscillation amplitude, potentially destabilizing the marine food web, with drastic consequences for the entire Antarctic ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of the krill population cycle, Palmer LTER versus model.
Figure 2: Mechanism of the multi-annual cycles in krill biomass.
Figure 3: Effect of interannual variations in algal productivity on krill population dynamics and synchrony.

Similar content being viewed by others

References

  1. Hewitt, R. P., Demer, D. A. & Emery, J. H. An 8-year cycle in krill biomass density inferred from acoustic surveys conducted in the vicinity of the South Shetland Islands during the austral summers of 1991–1992 through 2001–2002. Aquat. Living Resour. 16, 205–213 (2003).

    Article  Google Scholar 

  2. Quetin, L. B. & Ross, R. M. Episodic recruitment in Antarctic krill Euphausia superba in the Palmer LTER study region. Mar. Ecol. Prog. Ser. 259, 185–200 (2003).

    Article  Google Scholar 

  3. Fielding, S. et al. Interannual variability in Antarctic krill (Euphausia superba) density at South Georgia, Southern Ocean: 1997–2013. ICES J. Mar. Sci. 71, 2578–2588 (2014).

    Article  Google Scholar 

  4. Ross, R. M. et al. Trends, cycles, interannual variability for three pelagic species west of the Antarctic Peninsula 1993–2008. Mar. Ecol. Prog. Ser. 515, 11–32 (2014).

    Article  Google Scholar 

  5. Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).

    Article  CAS  Google Scholar 

  6. Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Knox, G. A. Biology of the Southern Ocean 2nd edn (CRC, 2006).

    Book  Google Scholar 

  8. Atkinson, A., Siegel, V., Pakhomov, E. A., Jessopp, M. J. & Loeb, V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep-Sea Res. I 56, 727–740 (2009).

    Article  Google Scholar 

  9. Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Ducklow, H. W. et al. Marine pelagic ecosystems: the West Antarctic Peninsula. Phil. Trans. R. Soc. B 362, 67–94 (2007).

    Article  PubMed  Google Scholar 

  11. Loeb, V. in The Impact of Environmental Variability on Ecological Systems (eds Vasseur, D. A. & McCann, K. S. ) 197–225 (Springer, 2007).

    Book  Google Scholar 

  12. Steinberg, D. K. et al. Long-term (1993–2013) changes in macrozooplankton off the Western Antarctic Peninsula. Deep-Sea Res. I 101, 54–70 (2015).

    Article  Google Scholar 

  13. Quetin, L. B., Ross, R. M., Fritsen, C. H. & Vernet, M. Ecological responses of Antarctic krill to environmental variability: can we predict the future? Antarct. Sci. 19, 253–266 (2007).

    Article  Google Scholar 

  14. Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. BioScience 56, 111–120 (2006).

    Article  Google Scholar 

  15. Ross, R. M., Quetin, L. B. & Kirsch, E. Effect of temperature on developmental times and survival of early larval stages of Euphausia superba Dana. J. Exp. Mar. Biol. Ecol. 121, 55–71 (1988).

    Article  Google Scholar 

  16. Meyer, B. & Oettl, B. Effects of short-term starvation on composition metabolism of larval Antarctic krill, Euphausia superba. Mar. Ecol. Prog. Ser. 292, 263–270 (2005).

    Article  CAS  Google Scholar 

  17. Ikeda, T. & Dixon, P. Body shrinkage as a possible over-wintering mechanism of the Antarctic krill, Euphausia superba Dana. J. Exp. Mar. Biol. Ecol. 62, 143–151 (1982).

    Article  Google Scholar 

  18. Ross, R. M., Quetin, L. B. & Haberman, K. L. Interannual and seasonal variability in short-term grazing impact of Euphausia superba in nearshore and offshore waters west of the Antarctic Peninsula. J. Mar. Syst. 17, 261–273 (1998).

    Article  Google Scholar 

  19. Moran, P. A. P. The statistical analysis of the Canadian lynx cycle. Aust. J. Zool. 1, 291–298 (1953).

    Article  Google Scholar 

  20. Massie, T. M., Weithoff, G., Kuckländer, N., Gaedke, U. & Blasius, B. Enhanced Moran effect by spatial variation in environmental autocorrelation. Nat. Commun. 6, 5993 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Smith, L. V. et al. Preliminary investigation into the stimulation of phytoplankton photophysiology and growth by whale faeces. J. Exp. Mar. Biol. Ecol. 446, 1–9 (2013).

    Article  Google Scholar 

  22. Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: a review of large-scale links in a krill centred food web. Phil. Trans. R. Soc. B 362, 113–148 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. Lond. B 268, 377–384 (2001).

    Article  CAS  Google Scholar 

  24. Abrams, P. A., Brassil, C. E. & Holt, R. D. Dynamics and responses to mortality rates of competing predators undergoing predator–prey cycles. Theor. Popul. Biol. 64, 163–176 (2003).

    Article  PubMed  Google Scholar 

  25. Fraser, W. R. & Hofmann, E. E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).

    Article  Google Scholar 

  26. Pennington, M. Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286 (1983).

    Article  Google Scholar 

  27. Atkinson, A. et al. Fitting Euphausia superba into Southern Ocean food-web models: a review of data sources and their limitations. CCAMLR Sci. 19, 219–245 (2012).

    Google Scholar 

  28. Pakhomov, E. A. Demographic studies of Antarctic krill Euphausia superba in the Cooperation and Cosmonaut seas(Indian sector of the Southern Ocean). Mar. Ecol. Prog. Ser. 119, 45–61 (1995).

    Article  Google Scholar 

  29. Meyer, B. The overwintering of Antarctic krill, Euphausia superba, from an ecophysiological perspective. Polar Biol. 35, 15–37 (2012).

    Article  Google Scholar 

  30. de Roos, A. M & Persson, L. Population and Community Ecology of Ontogenetic Development (Princeton Univ. Press, 2013).

    Book  Google Scholar 

  31. De Roos, A. M., Diekmann, O. & Metz, J. A. J. Studying the dynamics of structured population models: a versatile technique and its application to Daphnia. Am. Nat. 139, 123–147 (1992).

    Article  Google Scholar 

  32. Quetin, L. B. & Ross, R. M. Depth distribution of developing Euphausia superba embryos, predicted from sinking rates. Mar. Biol. 79, 47–53 (1984).

    Article  Google Scholar 

  33. Atkinson, A. et al. Natural growth rates in Antarctic krill (Euphausia superba): II. Predictive models based on food, temperature, body length, sex, and maturity stage. Limnol. Oceanogr. 51, 973–987 (2006).

    Article  Google Scholar 

  34. Meyer, B. et al. Physiology, growth and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614 (2009).

    Article  CAS  Google Scholar 

  35. Lowe, A. T., Ross, R. M., Quetin, L. B., Vernet, M. & Fritsen, C. H. Simulating larval Antarctic krill growth and condition factor during fall and winter in response to environmental variability. Mar. Ecol. Prog. Ser. 452, 27–43 (2012).

    Article  Google Scholar 

  36. Harrington, S. A. & Ikeda, T. Laboratory observations on spawning, brood size and egg hatchability of the Antarctic krill Euphausia superba from Prydz Bay, Antarctica. Mar. Biol. 92, 231–235 (1986).

    Article  Google Scholar 

  37. Siegel, V. & Loeb, V. Length and age at maturity of Antarctic krill. Antarct. Sci. 6, 479–482 (1994).

    Article  Google Scholar 

  38. Atkinson, A., Meyer, B., Bathmann, U., Hagen, W. & Schmidt, K. Feeding and energy budget of Antarctic krill Euphausia superba at the onset of winter: II. Juveniles and adults. Limnol. Oceanogr. 47, 953–966 (2002).

    Article  Google Scholar 

  39. Meyer, B. et al. Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea. Mar. Ecol. Prog. Ser. 398, 1–18 (2010).

    Article  CAS  Google Scholar 

  40. Ross, R. M., Quetin, L. B., Baker, K. S., Vernet, M. & Smith, R. C. Growth limitation in young Euphausia superba under field conditions. Limnol. Oceanogr. 45, 31–43 (2000).

    Article  Google Scholar 

  41. Englund, G. & Leonardsson, K. Scaling up the functional response for spatially heterogeneous systems. Ecol. Lett. 11, 440–449 (2008).

    Article  PubMed  Google Scholar 

  42. Hofmann, E. E. & Lascara, C. M. Modeling the growth dynamics of Antarctic krill Euphausia superba. Mar. Ecol. Prog. Ser. 194, 219–231 (2000).

    Article  Google Scholar 

  43. Gentleman, W., Leising, A., Frost, B., Strom, S. & Murray, J. Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics. Deep-Sea Res. II. 50, 2847–2876 (2003).

    Article  CAS  Google Scholar 

  44. Ryabov, A. B., Morozov, A. & Blasius, B. Imperfect prey selectivity of predators promotes biodiversity and irregularity in food webs. Ecol. Lett. 18, 1262–1269 (2015).

    Article  PubMed  Google Scholar 

  45. Sailley, S. F. et al. Carbon fluxes and pelagic ecosystem dynamics near two Western Antarctic Peninsula Adélie penguin colonies: an inverse model approach. Mar. Ecol. Prog. Ser. 492, 253–272 (2013).

    Article  Google Scholar 

  46. Kawaguchi, S., Candy, S. G., King, R., Naganobu, M. & Nicol, S. Modelling growth of Antarctic krill. I. Growth trends with sex, length, season, and region. Mar. Ecol. Prog. Ser. 306, 1–15 (2006).

    Article  Google Scholar 

  47. Tarling, G. A. et al. Recruitment of Antarctic krill Euphausia superba in the South Georgia region: adult fecundity and the fate of larvae. Mar. Ecol. Prog. Ser. 331, 161–179 (2007).

    Article  Google Scholar 

  48. Pakhomov, E. A. Natural age-dependent mortality rates of Antarctic krill Euphausia superba Dana in the Indian sector of the Southern Ocean. Polar Biol. 15, 69–71 (1995).

    Article  Google Scholar 

  49. Brinton, E. & Townsend, A. W. Regional relationships between development and growth in larvae of Antarctic krill, Euphausia superba, from field samples. J. Crustacean Biol. 4, 224–246 (1984).

    Article  Google Scholar 

  50. Behrenfeld, M. J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91, 977–989 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Atkinson, L. B. Quetin and R. M. Ross for useful comments on the manuscript; A.B.R. acknowledges support from the Helmholtz Virtual Institute PolarTime (VH-VI-500); A.M.d.R. is supported by funding from the European Research Council under the European Unions Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement No. 322814. This work contributes to the PACES (Polar Regions and Coasts in a changing Earth System) program (Topic 1, WP 5) of the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Data on krill abundance and biomass were retrieved from the Palmer LTER data archive (http://pal.lternet.edu/data) and data on size distributions were provided by L. B. Quetin and R. M. Ross. The Palmer LTER research was supported by the National Science Foundation, Office of Polar Programs, under Award Nos. OPP-9011927, OPP-9632763, OPP-0217282, ANT-1010688 and PLR-1440435, the Regents of the University of California, the University of California at Santa Barbara, and the Marine Science Institute, UCSB.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed the research; A.B.R., A.M.d.R., B.B. developed the model; A.B.R., S.K., B.M. parametrized the model, A.B.R. performed computer experiments and data analysis; A.B.R. and B.B. with contributions from other authors wrote the paper.

Corresponding author

Correspondence to Alexey B. Ryabov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Tables 1–5 (PDF 1500 kb)

Supplementary Code

C++ source code of the ontogenetic krill model. The archive includes computer model C++ code and additional files, which specify the initial conditions, model parameters, and settings tailoring the model output. All files should be copied into the same folder and compiled with gcc or a similar C++ compiler. The parameters of krill and resource dynamical model are specified in params.ini, the parameters of the simulation output, initial conditions, etc. are specified in the files named “krill.*”. To solve the differential equations, we use the Escalator Boxcar Train approach, see https://staff.fnwi.uva.nl/a.m.deroos/EBT/ for a detailed description of the solver setup. Any additional information can be requested from the corresponding author. (ZIP 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryabov, A., de Roos, A., Meyer, B. et al. Competition-induced starvation drives large-scale population cycles in Antarctic krill. Nat Ecol Evol 1, 0177 (2017). https://doi.org/10.1038/s41559-017-0177

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41559-017-0177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing